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ABSTRACT 

The growth of population and economic activities in many cities worldwide cause 

multiple problems related to urban transport. The social transformation has increased 

the urban mobility that leads to the increase of private cars and urban sprawl. Many 

urban transport systems today experience increasing congestion that threatens the 

quality of life and transport efficiency. Most researchers conclude that the provision 

of traffic flow information to road users is among the strategies to alleviate urban 

congestion. Providing real and accurate travel time information usually helps road 

users plan their trips and choice of appropriate mode of transport. However, precise 

prediction of travel time is a challenging problem, especially in developing countries 

where heterogeneous flow conditions exist and there are no records of information 

about the travel time for travellers. A limited number of studies have been performed 

under heterogeneous traffic conditions, and none of the existing models take into 

account stochastic waiting at the bus stops and delays at the intersections. To address 

this gap in knowledge, this research developed a dynamic travel time prediction 

model to determine travel time reliability and assess the delay distribution at the 

intersections under heterogeneous traffic flow conditions in the developing countries.  

The primary data were collected from public transport (commuter buses 

known as Daladala) using smartphones and stopwatches. The delay time at the 

intersections and waiting time at bus stops was collected through field observation at 

the intersection and the bus stop areas. Secondary data (traffic flow data) collected 

by the Japan International Cooperation Agency (JICA) in collaboration with the 

National Institute of Transport (NIT), was obtained from the NIT database. 
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The dynamic travel-time prediction model was developed by comparing 

Multiple Linear Regression and Artificial Neural Network models using waiting time 

at intersections, bus waiting time, and waiting time at bus stops, link distance, peak 

and off-peak hours, traffic volume, and travel time as input variables. The models 

were compared in terms of their performance using R-squared, Mean Absolute 

Percentage Error, and Root Mean Square Error, and the Artificial Neural Network 

model outperformed the Multiple Linear Regression model. The Artificial Neural 

Network model was then integrated with a Kalman filtering dynamic algorithm to 

produce an Artificial Neural Network-Kalman Filter Algorithm Dynamic model. 

Model accuracy was tested using R-squared, Mean Absolute Percentage Error, and 

Root Mean Square Error. Overall results revealed that the Artificial Neural Network-

Kalman Filter Algorithm model produced minimum error, and therefore, could be 

applied to predict travel time under heterogeneous traffic conditions. Moreover, the 

research evaluated travel time reliability in terms of travel time in the route links, 

waiting time at the bus stops, and delay time at the intersections. Four techniques 

were applied: buffer time, standard deviation, coefficient of variation, and planning 

time. The overall results indicated low service reliability in the outbound directions 

compared to inbound directions.  

Finally, the delay distribution at the intersections was determined. The delay 

time distribution was evaluated under three scenarios of traffic flow conditions: a) 

entire delay (inbound and outbound), b) off-peak hours (inbound and outbound), and 

c) peak hours (inbound and outbound). Results indicated that during the outbound 

peak hours, about 80% of cars spent between two and nine minutes to cross each 

intersection, followed by outbound off-peak, inbound peak, and lastly, inbound off-
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peak. In general, about 75% of cars spend two to nine minutes to cross the 

intersections for outbound directions, compared to 65% of cars for the inbound 

directions, because for the outbound directions, especially during peak hours, most 

people leave the city centre within the same period of time, which results in an influx 

of traffic flow along the five main corridors in the city.  

It is recommended that the model developed, travel time reliability 

determination and delay distribution at intersections should undergo further testing 

and validation, using comprehensive data from Dar es Salaam city to improve their 

reliability for future applications. 
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CHAPTER 1–INTRODUCTION 

1.1 Background  

The growth of economic activities in cities worldwide causes multiple problems 

related to urban congestion. This social transformation has increased urban mobility, 

leading to an increase of private cars and urban sprawl. Today, many urban transport 

systems experience increasing congestion that threatens the quality of life and 

transport efficiency. The mechanism of traffic propagation along urban networks is 

quite different from that on the freeway. Traffic flows on freeways are often treated 

as uninterrupted, while urban networks are considered to have interrupted flows. 

Vehicles operating in urban road networks are subjected to not only queue delay, but 

also to delay at intersections (e.g., traffic lights and traffic police) and delay time at 

bus stops (i.e., unknown waiting times and limited parking bays), as well as delays 

caused by vehicles entering from sides streets (Fan and Gurmu, 2015). Applying 

travel time prediction models developed for freeways directly to urban networks may 

not produce reliable results. Various technologies have been used to provide travel 

time information to road users, such as fixed detectors, where the fixed traffic 

detection employed in roadway networks are stationary detectors (e.g., loop 

detectors) installed at specific road segment locations. They continuously record all 

vehicles passing through the road segments, as well as recording travel speed and 

traffic volume. The limitation of this method is the high cost of installation and 

maintenance. Furthermore, fixed traffic detectors cover a small urban area, while 

mobile sensors (floating car systems) are used to collect traffic flow data at any point 

or predefined checkpoint along a travel route. 
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Moreover, many scholars believe that by increasing road capacity, such as widening 

roads, building flyovers, and introducing rapid mass transit, at a certain level, urban 

congestion will be minimized (Peng et al., 2016 Jain et al., 2012). However, urban 

environments are limited to further widening of roadway networks. 

Furthermore, other studies indicate that providing travellers with information, 

using Intelligent Transportation Systems (ITS), has shown a positive impact in reducing 

urban congestion (Kumar et al., 2017; Anil et al., 2017). ITS provides reliable 

information to road users, transport operators, and transport planners, which helps them 

to make appropriate decisions on how better to utilize and improve the use of existing 

road infrastructures. 

Providing travel time information to road users enables them to better decide 

their travel choices (e.g., mode of transport, route to use, and departure time). Urban 

commuters are very interested in knowing which route or mode to use that will 

provide a shorter travel time (Wu et al., 2019). Providing travel time information to 

passengers helps them in planning their trips and minimizes waiting times at bus 

stops (Fan and Gurmu, 2015). Travel time is vital information for the whole 

transportation system. It reflects the performance of road networks and has direct 

meaning to many audiences, including engineers, planners, and other road users 

(Zaki et al., 2013). It is essential, as it attracts more passengers and increases 

passenger satisfaction, well-being, and reduces uncertainty (Amita et al., 2016; 

Zheng et al. 2015). 

Travel time reliability and delay variability are key factors used by 

transportation engineers and travellers and are considered as very important tools for 
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making decisions on the improvement of urban infrastructures, mode choice, the 

route to use, and departure time (Durán- and Tirachini, 2016). The uncertainty 

regarding travel time decreases the quality of service, which causes users to change 

their routes and schedules, even when the average travel time is concise (Li et al., 

2016). 

The provision of travel time variability will raise awareness of policy makers 

and transport planners, as it will enable them to integrate existing road networks and 

fleet operations to meet the needs of travellers and economic growth in urban areas 

(Durán and Tirachini, 2016). Travel time variability is an important indicator, which 

is applied when appraising transport infrastructure investment, as well as road 

pricing for urban road networks (Fosgerau and Fukuda, 2012). Travel time variation 

analyses, such as mean and standard deviation, are very important in both transport 

planning and operations. Predicting accurate travel time not only helps transport 

companies to route schedule and allocate resources more accurately, but also 

facilitates the development of more robust model choice and departure time models 

(Fosgerau and Fukuda, 2012). Furthermore, travel time variability reflects the degree 

of variation in route travel times for recurrent conditions over days, weeks, and 

years. 

Vehicle travel time in urban areas consists of free-flow time, delay time (time 

west due to congestion), and waiting time at intersections and bus stops. Delay time 

at intersections typically result from queues and traffic control, while free-flow time 

is influenced by mid-link delay time resulting from turning vehicles from cross 

streets, bus maneuvers at bus stops, parking vehicles along the roadside, crossing 

pedestrians, and cyclists (Chen et al., 2017). 



4 
 

Travel time variation on urban roadways is also influenced by the fluctuation 

of traffic demand, time of the day, day of the week, weather, seasonal effect, traffic 

information, and nature of road infrastructure, as presented in Figure 1.1. Moreover, 

external factors, such as weather conditions (e.g., rain, snow, flooding) and road 

incidents also influence travel time variation. 

Free Flow Time

• Vehicles composition 

• Distance between intersections 

• Speed limit 

• Lanes width
Mid-Links

•Turning vehicles from streets

•Bus stops 
•Road sides parking 
•Pedestrian and cyclists crossing

Intersections 
• Overflow Traffic

• Traffic control  

External factors 

•  weather 

condition 

Urban travel time 

 

Figure 1.1: Factors Influencing Urban Travel Time Variability 

 

Travel time prediction or estimation can be computed using either a direct or indirect 

approach (Zheng, 2011). The direct approach implies that the travel time is measured 

directly from the road sensors using loop detectors and probe vehicles with global 

positioning system (GPS) capability. However, installing loop detectors on urban 

roadways to collect traffic flow data is difficult for developing countries due to  lack 

of funding to meet high costs associated with installation and maintenance (Shi et al., 

2017; Fan and Gurmu, 2015). The indirect approach is a popular technique used to 

predict urban travel time by modelling factors influencing urban traffic flow. 
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Most travel time prediction models are developed under homogenous traffic 

conditions, with the assumption that travel speed was constant and has less impact on 

travel time prediction (Jammula et al., 2018). The behaviour of traffic flows in the 

developed countries is characterized by a strict lane discipline and single-lane motion 

of vehicles with restricted movement across the lanes (Anil et al., 2017). Kwon et al. 

(2000), Altinkaya and Zontul (2013), and Anil et al., (2017) developed urban travel 

time prediction models under homogeneous conditions using loop detector data. The 

results indicated that the models were reliable in terms of predicting urban travel 

time. However, the application of these models in developing countries where traffic 

flow is mixed with non-motorized and motorized transport (heterogeneous traffic 

conditions) may not provide reliable results. 

Traffic flow in developing countries demonstrations a heterogeneous mix condition, 

due to different road facilities and vehicle composition which are influencing the 

uncertainty of traffic flow. The heterogeneous traffic flow condition occurred in the 

presence of a loose lane discipline and use of the entire road space without any 

quarantines for manoeuvring. The lateral movement of vehicles, apart from usual 

longitudinal motion, results mass queue formations that operate two-dimensionally. 

Furthermore, various compositions of vehicles have great impact in traffic flow 

speed, such as composition of non-motorized and motorized transport (Anil et al., 

2017; Sen el at., 2011). This impact was caused by the existence aforementioned 

factors that vary over time and space.   

Moreover, traffic light and traffic police are in charge of controlling traffic flow at 

the intersections simultaneously, which sometimes results in unpredictable delays. In 
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addition, there is no buses schedule associated with the bus stops, where buses can 

wait for passengers for a certain length of time, or bypass a bus stop (Vanajakshi, 

2016; Zhang et al., 2016). 

This research has developed a travel time model that incorporated link travel time, 

traffic flow, link distance, peak and off-peak hour, intersection delay time, and bus 

waiting time at the bus stops. Compared to the existing models, the use of 

intersection delay time and bus waiting time at the bus stops, in line with other 

parameters, improves the accuracy of travel time prediction, particularly for 

developing countries. The knowledge of urban travel time under heterogeneous 

traffic mix is essential for design, planning transport network and fleet operation in 

Dar es Salaam city. 

1.2 Statement of the Problem 

The accuracy of travel time primarily depends on the prediction method and input 

data used. However, existing literature shows that travel time prediction models 

developed under the homogeneous traffic conditions are beneficial for monitoring 

urban congestion, especially in the majority of the developed countries (Arhin et al., 

2016; Kumar et al., 2017). Limited studies have been performed on heterogeneous 

traffic conditions, and none of the existing models taking into account stochastic 

waiting at the bus stops and delays at the intersections. To address this knowledge 

gap, this research has developed a dynamic travel time model under heterogeneous 

traffic conditions, using delay time at the intersections and bus stops as input data, in 

developing countries, including Tanzania. Delay time at bus stops and intersections 

has been mentioned as among the significant factors that influence urban travel time 
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in urban road networks (Birr et al., 2014). The inclusion of delay time at intersections 

and bus stops will improve the accuracy of the travel time model, which reflects 

traffic flow conditions in cities of developing countries, including the City of Dar es 

Salaam. In this study, urban travel time prediction was divided into two stages. The 

first stage was to predict link travel time, and the second stage involved addressing 

the dynamic nature of link travel time. The Artificial Neural Network (ANN) was 

applied to model link travel time, and the dynamic Kalman Filter algorithm was used 

to predict future link travel time. 

1.3 Research Objective 

The main objective of this research was to develop a dynamic travel-time prediction 

model for commercial bus (Daladala) travel time under heterogeneous traffic flow 

conditions, by applying a neural network with dynamic Kalman filter algorithm 

integration. A secondary objective was to determine travel time reliability and 

variations at intersections along the five main corridors of Dar es Salaam.  

 

Three specific objectives were defined as: 

i. To develop the suitable urban travel time predicting model for bus that can 

incorporate heterogonous traffic flow conditions by applying an artificial 

neural network and dynamic Kalman Filter algorithm methods;  

ii. To establish travel time reliability for bus under heterogeneous traffic flow 

conditions; and  
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iii. To determine delay time variation at intersections under heterogeneous traffic 

flow conditions. 

1.4 Research Significance 

The overall importance of this research is to provide general insights for evaluating 

and monitoring urban congestion, particularly under heterogeneous traffic flow 

conditions, to enhance transport plan knowledge and road user information. This 

research is relevant to several of the following practical applications: 

• Travel time prediction models: instead of predicting the mean travel time or 

using Google route navigator, this study proposes a travel time prediction 

model which is more meaningful for urban networks that involve a number of 

uncertainties.  

• Travel time reliability: the method of determining travel time reliability in 

this research provides the potential of assessing travel time reliability in urban 

areas, which is one issue outlined in the policy goals of Tanzania, particularly 

in the City of Dar es Salaam. 

• The findings from this study are expected to be an ITS input to improve 

passenger knowledge for trip planning to minimize long travel time and 

waiting times at bus stops.  

• Furthermore, it is expected that the findings from this research will be used 

by transport planners and engineers to evaluate transport service and the 

levels of service at intersections.  
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The output is expected to provide some insight, which will assist transport policy-

makers with developing applicable policies that emphasize the improvement of 

capacity and quality of existing urban roadway infrastructure to accommodate 

increasing road traffic 

1.5 Scientific Contribution  

The scientific contribution of this study is a state-of-the-art understanding of 

dynamic urban modelling in travel time prediction. The modelling and evaluation of 

urban travel time under heterogonous traffic flow conditions using an Artificial 

Neural Network and Kalman Filter dynamic algorithms is not explicitly addressed in 

previous studies. This study addresses this gap in knowledge for the first time, using 

the following approach (see Chapter 3): 

• The dynamic travel time predictions model was derived under heterogeneous 

traffic flow conditions, which take into account off-peak, and peak hours, 

delay time at the intersections and waiting time at the bus stops on urban road 

networks;  

• The analysis of travel time reliability provides more insights into how to 

evaluate urban travel time under heterogeneous flow conditions. Such 

analysis provides the foundation for traffic engineers and policy-makers to 

identify problems and determine the effectiveness of mitigation strategies;  

• The delay time variation at the intersections was predicted, based on the 

Delay Time Distribution Model, to provide new knowledge on the evolution 

of delay time distributions at intersections under heterogeneous traffic flow 

conditions.  
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1.6 Organization of this Thesis  

This thesis is presented in five chapters, whose contents are summarized below. 

Chapter one: Briefly discusses background information, statement of the problem, 

objectives of the study, significance of the study, and research organization.  

Chapter Two: This chapter discusses topics considered relevant and necessary to the 

modelling of urban travel time. First, theories of urban travel time are discussed, 

taking into consideration their technical part and their weaknessing in the application 

of urban travel time modelling. Secondly, the different techniques for establishing 

urban travel time reliability are discussed, taking into account the nature of traffic 

flow in developing countries, such as Tanzania. Finally, the concept of delay 

variation at urban intersections is discussed.  

Chapter Three: This chapter covers a description of the research site and 

methodology. It also explains the philosophical underpinnings of travel time 

measures, data collection procedures, data sources, techniques, data collection tools, 

as well as data analysis.  Furthermore, it describes the methodology designed to 

execute the research. Equations and Figures are presented to summarize the 

significant steps followed in the process of modelling urban travel time to determine 

travel time reliability and establish the delay variation at the intersections. A detailed 

description of methods and assumptions applied to model urban travel time is given.  

Chapter Four: This chapter presents the research findings and a discussion of the 

results. First, the results from the specified objectives are discussed and evaluated 

based on the performance of the urban travel time model, in terms of Root Mean 
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Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). Secondly, the 

results from route travel time reliability are discussed based on link length, waiting 

time at the intersections, and waiting time at the bus stops. Travel time reliability has 

been computed by applying standard deviation, coefficient of variation, buffer time, 

and planning time. Finally, the delay distribution results are discussed using the 

probability of vehicle delay at forty-one (41) Dar es Salaam intersections.  

Chapter Five: This chapter presents the conclusions and recommendations resulting 

from the research. Each specific objective is treated with particular conclusions and 

recommendations to allow the reader to appreciate what was accomplished in each 

specific objective. 
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CHAPTER 2-LITERATURE REVIEW  

2.1  Introduction  

Modelling travel time on the freeways (homogeneous traffic flow conditions) has 

been intensively discussed in the literature, including travel time prediction, travel 

time reliability, and delay time variations (Jammula et al., 2018; Čelan and Lep, 

2017; Tian et al., 2015; Fan and Gurmu, 2015; Bharti et al., 2018; Torrisi et al., 

2017; Bhouri et al., 2016; Chen et al., 2017; Hashim et al., 2017; Kiran et al., 2016). 

A number of these models showed relatively good results in predicting travel times 

on freeways. In this research, the focus is on the travel time prediction under 

heterogeneous traffic flow conditions on urban roads, which makes this study unique, 

due to of the added complexity of traffic processes at intersections and bus stops. The 

traffic characteristics of urban roads are significantly different from those of 

homogeneous traffic conditions.  

Travel time consists of the following elements: 

i. Driving time, primarily calculated by travel distance and free-flow speed 

characteristics;  

ii. Waiting time at intersections, determined by the traffic control imposed at the 

intersections and waiting time at the bus stops, which is based on bus 

scheduling;  

iii. Time lost due to secondary operations, such as parking movements, loading 

and unloading vehicles and buses at stops, crossing pedestrians and cyclists, 

and turning vehicles from cross streets.  

In heterogeneous traffic flow conditions, travel time is determined by the speed limit, 

vehicle composition, driving behaviour, lane width, the number of lanes, and spacing 
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between two intersections (Zheng et al., 2015; Mathew, 2014b). Mid-link delay time 

is mainly caused by the buses at bus stops, vehicles parking along the road, and 

pedestrians and cyclists crossing the road. Also, the delay time is caused by queue 

lengths, which are a result of urban road bottlenecks (Kumar et al., 2014). 

Specifically, the research focused on developing a model based on free travel 

time in a link, waiting time at the bus stops, and delay time at the intersections, 

excluding intermediate non-motorized interruptions. Factors that influence travel 

time in the links, such as traffic volume and traffic states (off-peak and peak hours) 

were also incorporated. Moreover, delay at the intersection and dwell times at bus 

stops were also included in the developed model. 

Specifically, the research focused on developing a model based on free travel 

time in a link, waiting time at the bus stops and delay time at the intersections 

excluding intermediate non-motorized interruptions. It incorporated some factors that 

influence travel time in the links such as traffic volume and traffic states which are 

off-peak and peak hours. Moreover, waiting time at the bus stops and delay at the 

intersection will also be included in the model developed. 

2.2 Urban Travel Time Prediction 

Most researchers categorize travel time prediction models based on data sources and 

model approaches (Zhu et al., 2018). With the data sources method, travel time 

estimation and prediction are measured directly from fixed sensor-based (e.g., 

Bluetooth loop detectors, cameras, etc.), mobile sensor-based (e.g., probe vehicles 

equipped with GPS devices or mobile phones), and multiple data sources (e.g., 

combination of fixed sensor data and mobile sensor data) (Yusuf, 2013). A model 

approach uses the existing model and theories to estimate or predict travel time (Bai 
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et al., 2015). Furthermore, the model approach is classified into model-based 

methods and pure data-driven methods, which are common methods used to estimate 

and predict urban travel time (Zheng et al., 2015). 

Model-based methods make use of traffic flow models to predict travel time along a 

route of interest. The models apply primary and secondary data to calibrate its 

parameters and to determine the coefficients. On the other hand, pure data-driven 

approaches use statistic data to establish the relationship, i.e., trend analogies 

between the independent and dependent variables (e.g., the relationship between 

traffic flows, traffic density, and speed). 

2.2.1 Model-Based Methods  

The model-based method, including the Queue Theory Based Model, Traffic Flow 

Theory Model, Cumulative Vehicle Count Model, and Time-dependent Arterial 

Model, are discussed in this section 

2.2.1.1 Queue Theory Based Model  

Queuing Theory is the art of estimating or predicting the queue length and waiting 

times in the transport system. It uses queue lengths, traffic flow, link length, link 

capacity, and link speed as the parameters to predict urban travel time (Adan and 

Resing, 2010). The model is also known as the Sandglass Travel Time Model 

because of its character of discharging vehicles as sand particles flowing at the 

bottom of glass water. In this model travel time is computed as shown in Equation 

2.2.1. The equation contains two parts: the first part is the waiting time during the 

queue time, and the second part is the running time in the uncongested link. 
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where, 

𝑇𝑇 is the vehicle travel time, 

𝑁𝑞 and 𝐿𝑞 are the number of vehicles in the queue and queue length 

respectively, 

 𝐿 is the link length, 

𝑐 is the link capacity and, 

 𝑢𝑓 is the free-flow speed. 

 

The application of this model requires extensive data collection and calibration of the 

model parameter, such as load capacity, free flow, jam density, and queue length, 

which is complicated. Furthermore, it is very difficult to obtain such data in 

developing countries, such as Tanzania. This is due to the limited number of road 

facilities where data can be collected. 

2.2.1.2 Traffic Flow Theory Model  

Traffic Flow Theory model is a useful tool for describing dynamic traffic flow that 

takes into account the conservation of vehicles. This model assumes no vehicles are 

created or lost, which means vehicles are conserved in the transport system (Lighthill 

and Whitham, 1955). Equation 2.2.2 implies that the traffic flow is conserved, which 

means there is no vehicle which is entering or exiting through the link during the 

evaluation period. In other words, it implies that the number of vehicles entering the 
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beginning of the road section is the same as the number of vehicles exiting at the end 

of the road section. 
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       2.2.2 

( )q F k=          2.2.3 

 

where, 

 𝑞 = 𝑞(𝑥, 𝑡) and 𝑘 = 𝑘(𝑥, 𝑡) are the traffic volume and density at instant t 

and location x, respectively.  

The combination of Equations 2.2.2 and 2.2.3 yield the following partial derivative 

in the traffic density, Equation 2.2.4. The dynamic traffic flow can be described in 

Equation 2.2.4, with the assumption that the traffic speed corresponds to the traffic 

flow.  

( ) ( ), ,k x t k x tdQ

t dt x

 
+

 
      2.2.4 

Equation 2.2.4 is also known as the principle of conversation of vehicles, and 

Equation 2.2.3 represents the so-called fundamental diagram traffic flow. This model 

is widely used in predicting dynamic travel time on highways, and results are 

promising, especially in developed countries where homogeneous traffic flow 

conditions exist (Zheng, 2011). However, if applied directly to heterogeneous traffic 

flow conditions, where traffic flow is mixed, with non-motorized and motorized 

transport, the model may not represent actual conditions. Furthermore, traffic flow in 

most cities in developing countries is characterized by frequent entrance and exit of 
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vehicles and interruptions by traffic police at intersections.  The availability of data, 

such as traffic density and traffic volume, are very costly in terms of collection tools 

and legal authority that deals with traffic flow information. 

2.2.1.3 Cumulative Vehicle Count Model  

A Cumulative Vehicle Count model involves a traffic count model, applied using 

two loop detectors to calculate vehicle travel time between two points, and 

employing cumulative vehicle plots. Bhaskar et al., (2009) used these methods to 

estimate travel time from upstream and downstream locations in Lucerne, 

Switzerland. The results indicated that the model performs well in terms of travel 

time prediction, and is equivalent to real-time estimates from the number plate 

survey method. Travel time estimation is based on the starting time (𝑡) and the 

exiting time at the destination (𝑡), as indicated in Figure 2.1. 

 

Figure 2.1: Traffic Flow Cumulative 

 

Note: (𝑇1) is the traffic flow arrival curve at time T1, (𝑇2) is the cumulative curve at 

the exit at T2.   
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The travel time of vehicle N is calculated as indicated in Equation 2.2.5. 

( )2

1 2 1

T

T T TTT N T T= +         2.2.5 

where,  

TT is the travel time,  

N number of vehicles,  

T1 and T2 are the entry and exit time. 

Travel time is estimated based on a cumulative count of inflow traffic at the 

origin and outflow traffic at the destination. This approach is known as a cumulative 

count model. The numbers of vehicles are counted immediately upon entering a link 

at the moment the vehicles leave the link, as indicated in Figure 2.1. The cumulative 

traffic entry and exit at the origin and destination, respectively, are recorded by 

detectors. The model is very sensitive and depends on the accuracy of the detector 

count. If new vehicles enter, or park or a car overtakes or deviates from the link 

within the section, the result may not reflect the real link travel time, which is the 

weakness of this model (Bhaskar et al., 2009). Link travel time is defined as the 

difference between entry and exit times.  

The deficiency of this model is miscounting the number of vehicles between 

origin and destination detectors. The model is very sensitive in vehicle flow 

sequence. Although, proper counting is done at the origin, when vehicles diverge or 

enter at the middle of the section, the last detector assumes that there is no addition 

of cars in between, which is a counting error. The application of a count model in 
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urban areas, where the traffic count is interrupted or mixed, may not provide accurate 

travel time estimation. This model may not be easily applicable in most cities in 

developing countries because road network detectors are lacking. 

2.2.1.4 Time-Dependent Arterial Model  

Most travel time models are used to predict or estimate travel time by the summation 

of free flow time and stopping time, as in Equation 2.2.6. 

f sTT T T= +          2.2.6 

where,  

TT is the link travel time;  

fT is the free flow time; and  

sT is the stopping time.  

Liu et al., (2006) improved the model by using high-resolution data from 

loop detectors that combine free-flow travel time, delay time in the queue, and delay 

time due to traffic control. The travel time of the arterial link is, therefore, calculated 

as indicated in the Equation. 2.2.7. 
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where,  

TTO-D
(t) is the predicted travel time from origin O to destination D at the 

departure time instant t; 
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TTf O-D is the free-flow travel time from the upstream intersection i to the 

downstream intersection i+1;  

Qi
(t) is the queuing delay encountered by the vehicle arriving at the intersection i 

at time instant t; and 

Di
(t) is the signal delay encountered by the vehicle arriving at the intersection i at 

time instant t. 

The results show excellent performance at the expense of the high cost of 

installing road sensors along surveyed areas. Road sensors can collect data, such 

second-to-second detector data and signal control data, and are typically unavailable 

in most developing countries.  

The general application of the model-based method to predict urban travel 

time, especially in most developing countries, is impossible due to the nature of 

traffic flow (heterogeneous traffic flow conditions), unavailable traffic data, and 

insufficient urban road facilities for collecting traffic data.  

2.2.2. Pure Data-Driven Methods 

 

 Pure data-driven methods are pure statistic data collected, organized, and analysed 

to create or to establish relations, trends or similarities between two or more 

parameters, which are dependent and independent variables (e.g., speed, time, and 

distance) and to estimate or predict travel times without using the existing models. 

The models determine the logical structure of a database in such a way that data can 

be stored, organized, and manipulated. Data-driven models are commonly used to 

estimate or predict urban travel time by analysing the collected data from the road 

networks. Some previous studies classify a purely data-driven approach using several 
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different methods (Shalaby and Farhan, 2003; Jeong and Rilett, 2004; Abdalla and 

Abdel-Aty, 2006; Vanajakshi and Rilett, 2007; Jindal et al., 2017; Kumar, 

Vanajakshi and Subramanian, 2018). These methods are discussed in the following 

subsections and evaluated for their ability to estimate and predict urban travel time. 

 2.2.2.1 Historical Data Models  

Historical data models basically apply historical data and are commonly used to 

predict car travel times or traffic flow using previous data. For the case of urban 

travel time estimation, these models are applied when the traffic flow is relatively 

small and stable, with the assumption that the current traffic condition is stationary 

(Amita et al., 2015). Williams and Hoel (2003) argue that traffic flows normally 

depend on the time of day, day of the week, and travel time patterns. They further 

explain that historical models are suitable when analysing time and day of the week. 

Therefore, these models are reliable only when the traffic pattern in the area of 

interest is relatively stable, especially in rural areas.  

 Jeong and Rilett (2004) developed a travel time model for predicting bus 

arrival time by comparing three models: A Historical Data model, Regression model, 

and Artificial model. The results show that the Historical model did not perform well 

in terms of prediction accuracy compared to the other models. Lin and Zeng (1999) 

developed a Historical Data model for predicting rural travel time using four 

algorithms. The performance of the algorithms was evaluated in terms of accuracy, 

steadiness, and robustness, and the results indicated that the Historical Data model 

performs well compared to other models. However, in most cases, the Historical 

Data model performed better in rural areas than in urban areas because of the 

stability of traffic flow in the rural areas (Bacon et al., 2011). 
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  2.2.2.2 Time Series Models 

Time Series is a sequence of well-defined data points measured at consistent time 

intervals over a period of time. Time series models are popular in the prediction of 

travel time. Ta-Yin and Ho (2010) developed a Time Series model to predict urban 

travel time using historical speed data from a vehicle detector. One advantage of 

these models is that the traffic state (speed, flow, occupancy, etc.) or travel time in 

previous time intervals, can be incorporated to predict travel time in the next time 

interval, especially for trend prediction. However, this model is based on the 

previous traffic flow trend, without taking into account current traffic flow and 

missed data. As such, these models cannot capture current traffic flow behaviour or 

changes in traffic flow, such as from congestion to free-flow conditions. The 

accuracy of time series models highly relies on the similarity between the real-time 

and historical traffic patterns. Furthermore, these models require a large amount of 

historical data, which is generally not available in most developing countries.  

 2.2.2.3 Regression Models 

Regression models predict and explain a dependent variable, using the mathematical 

function formed by a set of independent variables (Kwon and Bickel, 2000). Unlike 

historical data-based prediction models, these models perform better, especially for a 

stable traffic flow state. Regression models usually measure the simultaneous effects 

of the variables, which are independent and are affecting the dependent variables. 

Hawas (2013) developed multi-linear regression models to estimate bus travel times 

using average traffic intensity, posted speed, route length, bus frequency, loadings, 
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and alighting time as independent variables. The results revealed that the models 

perform well in terms of bus travel-time prediction in urban road networks. 

 

  Wu et al., (2004) applied Support Vector Regression (SVR) to predict urban 

travel-time and compared the results to other baseline travel-time prediction methods 

using real highway traffic data. Hawas (2013) used micro-based regression to 

estimate bus route and network travel time, and the models were calibrated to predict 

both route and overall network travel times. 

  

Jeong and Rilett (2004) developed and compared the historical data-based 

model, regression models, and Artificial Neural Network (ANN) models to predict 

bus arrival time. The results found that ANN models outperformed the historical 

data-based model and regression models, in terms of prediction accuracy. Wang et al. 

(2014) proposed a bus arrival-time prediction by applying a Multiple Linear 

Regression model to Neural Networks (NNs) using a Radial Basis Function (RBF) 

and adjusted online data, and compared the data with the RBFNN without online 

adjustment. The results revealed that RBFNN with online data adjustment had a 

better predicting performance. However, the models are simple and can incorporate 

more than one parameter, and the applicability of the multi-regression models in 

urban areas is limited because most of the variables in urban traffic flow are highly 

integrated (Chien et al., 2002). 

2.2.2.4 Artificial Neural Network Models (ANN) 

The Artificial Neural Network (ANN) is computer software that inspires the 

biological functions of neural cells in human brains, aiming at acquiring the 
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intelligent features of neural cells. NNs can learn by example. They can be trained to 

recognize a car image by showing it several times, or can predict future travel time 

by feeding historical travel time data. ANN models are capable of dealing with 

complex and noisy data and are suitable for finding nonlinear relationships between 

the dependent variable and independent variables. NNs have been widely applied for 

short-term traffic flow and travel time prediction, especially in urban areas (Fan and 

Gurmu 2015).  

ANNs are gaining popularity in predicting bus arrival time because of their 

ability to solve complex non-linear relationships (Chien et al., 2002; Ghiassi et al., 

2005; Altinkaya and Zontul, 2013; Gurmu et al., 2014; Amita et al., 2015; Jindal et 

al., 2017). In one study, Amita et al. (2015) predicted bus travel time by applying 

ANNs. The results reveal that the ANN model outperformed the Regression model, 

in terms of accuracy and robustness.  

Fan and Gurmu (2015) developed three dynamic travel time prediction 

models: Historical Average (HA), Kalman Filtering (KF), and ANN. The accuracy 

and robustness of each model was compared to obtain a suitable model. Results 

indicated that the ANN outperformed the other two models in accuracy and 

robustness. ANNs have the ability to not only learn, but also model non-linear and 

complex relationships and are widely used to estimate and predict urban travel time. 

Several studies have used ANNs to predict urban buses travel time (Chien, et al., 

2002; Jeong and Rilett, 2004; Ghiassi et al., 2005; Liu et al., 2006; Ta-Yin et al., 

2010; Zheng and Van Zuylen, 2013; Gurmu et al., 2014). Zheng and Van Zuylen 

(2013) developed an ANN model and compared it with analytical models proposed 
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by Hellinga et al., (2008), using data derived from a VISSIM simulation model. The 

results indicated that the ANN model outperform the analytical model.  

Gurmu et al., (2014) developed a travel time prediction model by comparing 

the ANN and HA models based on two criteria: prediction accuracy and robustness. 

The results show that the ANN outperformed the HA model in both aspects. Wang et 

al. (2014) compared the Multiple Linear Regression model, NNs, and the RBFNN 

model using historical data, and later adjusted the models using online data. The 

results show that the RBFNN online data model had a better predicting performance 

than the other two models. Amita et al., (2015) employed the ANN to predict urban 

travel time, based on the model’s accuracy and robustness, compared with other 

models, in predicting bus travel time. 

Furthermore, Fan and Gurmu (2015) compared the HA, KF, and ANN 

models to obtain sufficient dynamic models using GPS data. The results revealed that 

the ANN models outperformed the other two models in both aspects. The ANN 

model performed well, in terms of predicting urban travel time, compared to all other 

pure data-based models. Zaki et al. (2013) presented an effective method to predict 

the expected bus arrival time at individual bus stops along a service route. The study 

combined a NN and KF to predict travel time, and the results were satisfactory and 

accurate. 

2.2.2.5 Limitation of Artificial Neural Network  

Artificial neural networks model is a popular model that used to perform 

nonlinear statistical data to provide solutions. These models are commonly used to 

predict or estimate urban traffic flow behaviour; however, it has a numbers of 

limitations such as low interpretability, poor scalability for handling large volume of 
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data and high cost for applying to all the lines of transport network. Furthermore, 

there is no specific rule for determining the structure of artificial neural network and 

appropriate network structure is achieved through experience and trial and error. 

2.2.2.6 Kalman Filtering Model (KF) 

The main advantage of Kalman Filter model is its ability to continuously change 

previous states, using tracking errors from the system, to update the current states. 

Furthermore, it can update the previous statistical data for the current states through 

an iteration process and minimize error to zero, compared with other mathematical 

models (Panomruttanarug and Longman, 2008). Kumar et al., (2014), applied KF to 

predict future travel time using the identified patterns from a temporal discretization 

model under heterogeneous traffic conditions. The results indicate that the proposed 

algorithm shows good improvement, in terms of accuracy prediction, compared to 

the space discretization model. Most of the literature suggests that these models can 

take into account the uncertainty properties of urban travel time in predicting future 

travel time, by adjusting the process and the measurement noise and minimizing the 

variance of the prediction error (Chen et al., 2004; Liu et al., 2006; Zaki et al., 2013; 

Vanajakshi, 2016; Shalaby and Farhan, 2003), as shown in Equations 2.2.7 and 2.2.8. 

Kalman Filtering (KF) Equation  

 

There are two basic building blocks of a Kalman Filtering algorithm: the 

measurement equation, and the transition equation. In general, the measurement 

equation relates an unobserved variable 𝑥𝑡 to an observable variable, as indicated in 

Equation 2.2.7. 

t t tY mx = +
         2.2.7
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where, 

𝑌𝑡 is the observable variable;  

𝑥𝑡 is the unobserved variable;  

𝑚 is the Kalman filter coefficient value that remains constant throughout time during 

travel time prediction; and 

𝛾𝑡 is the measurement of noises, which has a mean of zero and a variance of 𝜌𝑡. 

The transition equation in the KF algorithm is based on a model that allows the 

unobserved variable to change throughout time. In general, the transition equation is 

represented by Equation 2.2.8. 

𝑋𝑡+1 =  𝑎𝑋𝑡 + 𝜃𝑡        2.2.8 

where, 

a is the transition equation coefficient value that remains constant through time; and 

θt is the process disturbance noises, which have a mean of zero and a variance of qt. 

Several studies have applied a KF dynamic algorithm to predict urban travel 

time with very impressive results (Fan and Gurmu, 2015; Wang et al., 2014; 

Kormáksson et al., 2014). Moreover, other studies have showed that KF models are 

feasible and have a strong theoretical foundation in travel time prediction (Bai et al., 

2015; Jiang et al., 2014; Altinkaya and Zontul, 2013). Compared to other statistic 

models, KF can iteratively incorporate previous travel time into current travel time to 

predict future link travel time. 

2.2.3 Dynamic Travel Time  

Many transport planners, engineers, operators, and road users prefer knowing the 

future travel time of a particular route, rather than relying on estimated route travel 
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time. However, most of the models fail to predict future urban travel time because of 

the uncertainties and dynamics of traffic flow (Arnold et al., 2007; Vanajakshi et al., 

2008; Bai et al., 2015; Anil et al., 2018). The interruption caused by travel 

conditions, such as traffic lights, traffic flow, daytime volumes, weather conditions, 

driving behaviors, and bus stops, make prediction of urban travel more complicated 

(Altinkaya and Zontul, 2013). The ability to obtain an accurate prediction model for 

real-time is vital. Chien and Kuchipudi (2003) developed a dynamic travel time 

prediction using real-time and historical data, with integration of the KF algorithm. 

Chen et al., (2004) developed a dynamic model for predicting bus arrival times at the 

bus stops, by applying an ANN model and using a KF dynamic algorithm to adjust 

the arrival-time to minimize prediction errors. The result indicated that KF 

algorithms have the ability of filtering noises present, due to short time arrival, and 

adjust them to the latest travel time. Zaki et al., (2013) developed a Dynamic Travel 

Time Prediction model for analyzing bus arrival time at individual bus stops along a 

service route by integrating ANN and KF. The results revealed that the model was 

reasonably capable of predicting arrival time at a bus stop. 

Moreover, Chen et al., (2014) developed a dynamic algorithm using historical data to 

predict urban travel time. The results indicated that the proposed algorithm produced 

more accurate travel time than other models, in terms of mean absolute error. 

Elhenawy et al., (2014) proposed a dynamic travel time algorithm using historical 

model data to predict urban travel time. The results from this study showed that the 

model was not as useful as other models. Most of the literature indicate that the ANN 

can manage complex nonlinear spatial and temporal problems (Liu et al., 2006; 

Jeong and Rilett, 2004; Amita et al., 2015; Jindal et al., 2017). However, a primary 
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problem with the ANN model is that it requires offline training with substantial input 

and output data. Nevertheless, most researchers conclude that the combination of the 

ANN model and other models, such as the KF algorithm, yield potential in predicting 

dynamic urban travel time (Altinkaya and Zontul, 2013; Zheng and Van Zuylen, 

2013; Fan and Gurmu, 2015; Amita, Jain, and Garg, 2016). 

2.2.4 ANN and KF Dynamic Model  

A number of researchers have applied ANN models to predict urban traffic flow 

because of its ability to solve complex non-linear relationships (Amita et al., 2015; 

Bai et al., 2015; Fan and Gurmu, 2015; Chien et al., 2002). Zheng and Van Zuylen 

(2013) applied an ANN model to estimate urban link travel time using speed, 

position, and time-stamped information from probe vehicles as input data. Amita et 

al. (2015) employed an ANN to predict bus travel time, and the model outperformed 

in accuracy and robustness. Li et al., (2017) developed a travel time dynamic model 

by applying the ANN model to predict urban travel time using online data, and found 

considerable variation from the real travel time. However, it was argued that ANN 

models cannot capture noise errors and adjust predicted travel time continuously (Li 

et al., 2017; Bai et al., 2015; Fan and Gurmu, 2015). 

The KF algorithm has been applied by different researchers in predicting the 

future travel time, whereby historical data were used as dependent variables (Chen et 

al., 2004; Fan and Gurmu 2015; Chien and Kuchipudi 2003). Overall results showed 

small variations, compared to real data, in terms of predicting real travel time, 

particularly during peak hours. Bai et al., (2015) developed a Dynamic Travel Time 

model by combining the ANN and the KF algorithm to predict bus travel time for 

multiple routes. Results from this study revealed that the model performed well 
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compared to other models used to predict multiple bus routes. Kumar et al., (2017) 

proposed a hybrid model that combined the Exponential Smoothing model and KF 

technique. The model showed significant improvement, compared with existing 

models, in the prediction of bus travel time. The KF algorithm is applied to adjust 

baseline travel time from the ANN to the future link travel time, because it can 

continuously update the state variable, based on the previous state, creating new 

observations (Zaki et al., 2013). 

In summary, previous studies have managed to develop dynamic travel time 

prediction models based on homogeneous traffic, with the assumption of 

uninterrupted traffic flow. This is contrary to heterogeneous traffic flow conditions, 

where traffic flow comprises low and high-speed models of transport, interruption by 

traffic police at intersections, and unpredictable waiting times at bus stops. Also, 

most of the models use variables, such as trip distance, speed and traffic flow, as 

primary factors influencing urban travel time, without taking into account delay time 

at the intersections and waiting time at the bus stops. Recent studies indicate that the 

integration of the KF dynamic algorithm and ANN models outperform other models 

in terms of prediction accuracy. This study developed a Dynamic Travel Time 

Prediction model using delay time at intersections and bus waiting time at bus stops 

as one of the input parameters, and employed an ANN and KF algorithm, based on 

data collected in Dar es Salaam city. 

2.3 Route Travel Time Reliability  

Travel time reliability is a key measure of congestion. It can serve as the starting 

point for prioritizing improvements in the urban transport system (Lyman, 2007). 

Passengers not only take travel time into account, but also travel time reliability 
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(TTR). Furthermore, Lyman and Bertini (2008) argue that travel time reliability in a 

given corridor has more importance to travellers, shippers, and transport managers 

than the travel time itself. However, the uncertainty of urban travel time decreases 

the quality of service and leads road users to change their routes and schedules, even 

when the average travel time is low (Bhouri et al., 2016). The movement of 

passengers in business and social activities becomes more complicated when travel 

time is not reliable. The diversity and geographical spread of these activities has 

resulted in a more intensive use of transport systems, and hence, greater dependence 

on the reliability of transport networks (Torrisi et al., 2017). 

For this reason, passenger prediction of hour of departure, destination, mode, 

and paths is not only affected by the average travel time experienced, but also by its 

variability through the perception of travel time reliability (Zhenliang et al., 2015). 

Also, it is noted that the unreliability of urban travel time can undermine the 

attractiveness of transport services and increase operation costs, due to loss of 

kilometers and lower fleet utilization (Taylor and Susilawati, 2012). Travelers may 

add more time to their average travel time for trips to limit the possibility of arriving 

late (Torrisi et al., 2017). Several studies have argued that providing a reliable 

transport service, in terms of reliable travel time and good scheduling, is an 

obligation of public transport (Charlotte et al., 2017; Chen et al., 2009). 

The factors affecting travel time reliability are unpredictable, such as demand 

flow, roadway geometrics, and other events, such as weather conditions and traffic 

incidents (OECD, 2010). Furthermore, uncertainty produced by fluctuations in traffic 

flow, traffic control, road incidents, road works, varying road geometry, rain, and 

snow makes travel time reliability unstable (Zhu et al., 2018). The effects of these 
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factors make prediction of travel time complicated and difficult to manage urban 

traffic flow. The composition of traffic flow in developing countries is mixed, with 

motorized and non-motorized motor vehicles using the same right-of-way. This 

mixture of fast-moving vehicles (e.g., passenger cars, buses, trucks, two-wheel 

motorcycles, and three-wheel motorcycles) and slow-moving vehicles (e.g., bicycles, 

tricycles, and pushcarts) adds to the difficulty in estimating travel time reliability 

(Anil et al., 2017). In most developing countries, travel time fluctuations are 

commonly influenced by a number of factors, as listed in Table 2.1. 

Table 2.1: Factors Affecting Reliability 

No  Factors Description 

1 Traffic condition  It includes traffic congestion, divergences and 

convergences of traffic, road incidents, such as 

accidents and working zone period. 

2 Traffic composition Mixture of traffic, such as motorized and non- 

motorized period  (motor vehicles motorcycle, 

bicycles, pushcarts, tricycles, and pedestrians) 

3 Delays at the intersection and 

bus stops  

Police control at the intersections, signal delays, 

and waiting time at the bus stops period   

4 Weather conditions  Rain and floods period   

5 Other factors  Roadside parking and bumps; all these tend to 

reduce the vehicle speed period   

Source: Field observation in Dar es Salaam 2019 

One major drawback of using existing travel time reliability indicators is that 

most of the indictors are developed under homogeneous traffic flow conditions. 

Applying these indictors to heterogeneous traffic conditions may not represent reality 

(Torrisi et al., 2017; Bhouri et al., 2016; Vanderval et al., 2014). A review of the 
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literature on travel time reliability reveals that studies on predicting travel time 

reliability under heterogeneous traffic conditions in developing countries are limited. 

Chen et al., (2009) analyzed travel time reliability at bus stops and routes in Beijing, 

China using three indicators: punctuation index, deviation index based on bus stops, 

and evenness index of bus stops. Mehran (2009) proposed a methodology for 

estimating travel time reliability using travel time variations as a function of demand, 

road capacity, weather conditions, and a buffer time index used to measure travel 

time reliability. The results revealed that the estimated travel time reliability could be 

applied in evaluating urban congestion in Japan. 

In public transport, travel time reliability is considered as a quality of service 

measure, which enables passengers to choose the appropriate route, scheduling 

waiting time at bus stops, and mode of transport. Moreover, it enables operators to 

minimize frustrations in scheduling (Kieu et al., 2013). Travel time reliability is the 

indicator for evaluating the level of service (LOS) in given routes, and reflects the 

mobility and satisfaction of road users (Torrisi et al., 2017). The importance of travel 

time reliability information has been viewed by users, transport engineers, transport 

planners, and road authorities as vital information for synchronizing daily activities, 

improving scheduling of fleet transport, and improving LOS (Mehran 2009). Taylor 

and Susilawati (2012) applied Buffer Index, Delft skewers, and fitted burr as a 

measure of travel time reliability, which opened the way for evaluating urban 

transport systems. Existing literature shows that travel time reliability is commonly 

measured using buffer time, tardy trip probabilistic measures, coefficient of 

variation, planning time, and misery index for urban areas (Bhouri et al., 2016; 



34 
 

Florida Department of Transportation (FDOT), 2016; U.S. Federal Highway 

Administration (FHWA), 2010; Chen et al., 2009). 

2.3.1 Measure of Travel Time Reliability 

Definitions of travel time reliability  

The United States (U.S.) Federal Highway Administration (FHWA) (2005) define 

travel time reliability as how much travel times vary over time. Travel time 

reliability is defined as the consistency or dependability in travel times, as measured 

from day-to-day and across different times of the day. Al-Deek and Emam (2006) 

and Vanderval et al., (2014) defined reliability as the probability that components, 

products, or systems will perform their intended functions satisfactorily for a 

specified length of time under the stated operating conditions. Moreover, travel time 

can be defined as how much travel time varies over the cause of time (Gittens and 

Shalaby, 2015). Travel time reliability relates to how travel time, for a given trip and 

period, performs over time. 

Vanderval et al., (2014) proposed different methods for measuring travel time 

reliability, such as standard deviation and coefficient of variation, which are used to 

quantify travel time reliability. Furthermore, average travel time has been used as a 

simple indicator for measuring travel time reliability (Bhouri et al., 2016). Margiotta 

et al. (2013) argued that standard deviation, the 90th percentile, and average travel 

are good indictors for measuring transport service quality. Standard deviation and the 

90th percentile are the most widely used methods of evaluating transport systems 

worldwide (Russell, 2014). Different authors have measured travel time reliability as 

shown in Table 2.2. 
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Table 2.2: Travel Time Reliability Indicators 

TTR Indicators  Definition Recommendation of 

measure 

Standard Deviation Usual statistical definition Margiotta et al., (2013) 

Coefficient of 

Variation (COV)  

The coefficient of variation 

shows the spread of the 

variability in travel time 

Bhouri et al., (2016) 

95th or other 

percentile travel time 

This measures the delay 

occurring during the most 

massive traffic days on a 

particular route. 

FHWA Guide (2006) 

Bufferi Index This.is a measure of the 

extra time a driver takes to 

complete the journey over 

the time taken for normal 

.conditions. It is defined as 

the .difference .between the 

95th percentile travel time 

and the average travel time 

and then divided by the 

average travel time. 

FHWA Guide. (2010) 

Bharti et al,. (2018)  

Bhouri et al., (2016) 

Planning Time 

index 

This measures the total 

travel time (counting  buffer 

time) and is calculated 

usually as the 95th percentile  

travel time over free-flow 

travel time expressed as a 

ratio 

This TTR measure is 

encouraged by various 

sources such as (FHWA 

2010) Vanderval, et al., 

(2014) 

Variation in Percent This. measures the ratio of 

the standard deviation to the 

mean, i.e., the coefficient of 

variation, stated as a 

percentage.  

It represents the association 

between the amount of 

variation and the average 

travel time in a per. cent age 

measure 

Its use as a TTR measure is 

recommended by 

Bharti et al., (2018) and  

FHWA (2010) 

 

Probabilistic Measure  

It calculates the chance that 

Travel  times occur within a 

 FHWA, (2010) and Bhouri 

et al., (2016) 
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TTR Indicators  Definition Recommendation of 

measure 

specified interval of time  

Misery Index 

(Adapted) 

The average of the highest 

(5%) five per cent of travel 

times divided  by 

the free  flow travel  time 

(Bhouri et al., (2016) 

Source: FHWA, (2010) 

 

2.3.2 Standard Deviation  

 

The standard deviation is a basic indicator used to reflect the reliability of transport 

service. It shows the variation of travel time, around the average, for a given time of 

the day. If the variation is very large, transport service becomes unreliable with 

extreme delays. This also makes the normal distribution curve to be widespread 

around the mean and vice versa (Guessous et al., 2014), as shown in Equation 2.3.1. 

𝑆𝑇𝐷 = √
1

𝑛−1
∑ (𝑇𝑇 − 𝑀)2𝑛

𝑖=1        2.3.1 

where,  

STD is the standard deviation, 

n is the number of travel time observations in a particular time of day or day 

of the week, 

TT is the travel time observation on the day, at the time interval, and  

M is the mean travel time. 

 

2.3.3 Coefficient of Variation  

The coefficient of variation is the ratio of the standard deviation to the mean travel 

time, as shown in Equation 2.3.2. It represents the variability of travel time. 
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𝐶𝑉 =
𝑆𝑇𝐷

𝑀
        2.3.2 

where, 

CV is the coefficient of variation, 

STD is the standard deviation, and  

M is the mean travel time. 

2.3.4 Percentile Value  

The percentile value is a good approach for evaluating travel patterns in a given 

urban area, such as travel corridors in Dar-es-Salaam city, and 95th percentile 

indicators are very useful for evaluating transport services. The 95th Percentile travel 

time index, is the 95th percentile travel time divided by the free flow travel time. 

This is also known as the planning time index, and is the longest time that has been 

experienced by passengers, excluding average travel time as sufficient travel time to 

be used by a passenger to arrive on time. However, as long as this indicator does not 

include average travel time or delay time, it may not be applied directly to compute 

travel time reliability 

2.3.5 Buffer time  

 

Buffer time is the extra time users add to average travel time to ensure they arrived 

on time. It explains the extra percentage of time passengers will add to average travel 

time, due to travel time variability, in order to gain a higher probability of arriving on 

time (Bhouri et al., 2016). Buffer time is computed as shown in Equation 2.3.3     

 

       2.3.3 
95 50Bt tt tt= −
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where, 

Bt is the additional time above the average travel time (tt50), 

tt95 is the 95th percentile travel time, and  

tt50 is the average travel time. 

  

2.3.6 Buffer Index (BI) 

 

Indicators associated with this phenomenon are buffer time, Buffer Index (BI), and 

Planning Time Index (PTI) (Organization for Economic Co-operation and 

Development (OECD), 2010).  

In practice, the buffer time varies from one user to another because every 

individual needs a different amount of extra time to arrive at his/her destination on 

time. For example, a BI of 40% means that a traveller should budget an additional 8-

minutes of time to buffer a 20-minute average peak travel time to ensure on-time 

arrival (OECD, 2010). Buffer time index is computed as the difference between the 

95th percentile travel time (tt95) and the average travel time (tt50), normalized by the 

average travel time (tt50). The BI is the ratio between the buffer time index and the 

average travel time as shown in Equation 2.3.4 

95 50

50

tt tt
BI

tt

−
=         2.3.4 

where, 

Bt  is the buffer Index  ( tt50 ), 

tt95 is the 95th percentile travel time, and  

tt50 is the average travel time. 
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Equation 2.3.4 answers simple questions such as "How much time do I allow 

for the uncertainty of travel conditions?" or "When should I leave?" (Bhouri et al., 

2016). The BI gives the percentage of time wasted for counterbalancing uncertainty, 

independently from the duration of the trip. 

2.3.7 Planning Time Index (PTI) 

 

Planning time (PT) is the extra time passengers add in free time to arrive at their 

destination on time. PT is computed as the 95th percentile of the longest travel time 

that passengers experience, while buffer time is computed from the average travel. 

For example, a planning time index (PTI) of 1.60 means a passenger will allow an 

additional 60% of free-flow time to ensure on-time arrival. This is the total time a 

passenger needs to arrive at a destination with a 95% assurance of being on-time. PTI 

is computed as the 95th percentile travel time (tt95) divided by free-flow travel time 

(ttfree-flow), as shown in Equation 2.3.5. 

95

f

tt
PTI

tt
=           2.3.5 

The BI and PTI indicators use the 95-percentile value of the travel time 

distribution as a reference of the definitions, and take into account more explicitly 

the extreme travel time delays, compared to standard deviation indicators. Moreover, 

the BI and PTI indicators consider the complete pattern of the travel time 

distribution. Therefore, these indicators were deemed suitable for evaluating travel 

time reliability in this research. 
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2.3.8 Tardy Trip Measures  

 

Tardy trip measures indicate unreliability impacts using the amount of late trip times. 

If travellers only use the average trip time for their travel plans, they will be late for 

half of their destinations and early for the other half (in round numbers). A misery 

index (MI) calculates the relative distance between mean travel time of the 20% most 

unlucky travellers and the mean travel time of all travellers, as shown in Equation 

2.3.6. 

       2.3.6 

 

where, 

Mtt50 is the Average travel rates for all trips, 

Mtt is the Average of the travel rates for the longest 20% of the trips, and 

M is the Average Travel Rate. 

2.3.9 Probabilistic Measures 

Probabilistic indicators (Pr) calculate the probability that travel times occur within a 

specified interval of time. Probabilistic measures are applied in the sense that 

travellers use a threshold travel time or a predefined time window to differentiate 

between reliable and unreliable travel times (Van Lint et al., 2008). The threshold 

assumes that travel times do not deviate more than 𝛽 minutes from the median travel 

time, as indicated in Equation 2.3.7. 

Pr (tt ≥ β + tt50) ≥ 95%       2.3.7 

Where, 

𝛽 is given any value in minutes; and  

50tt ttM M
MI

M

−
=
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tt is the time users indicate that they have to add to their average travel time 

or to their free-flow time to avoid being late to their destinations. 

The application of probability measures, standard deviation, and coefficient 

of variation may not be relevant indictors to travellers. Still, they are useful for 

operators and transport planners in evaluating the transport system. Also, these 

indices, i.e., BI, PTI, MI, are ratios, and therefore, unit less. Thus, they are 

comparable, regardless of the trip travel time, and are useful to fleet operators for the 

purpose of updating the scheduling.  

Therefore, travel time reliability is a popular indicator, which highlights to 

travellers the extra time they should add to the average travel time to reach their 

destination on time. Also, it is very applicable to aspects of the transport industry 

such as ITS investment, road renewal, dedicated lanes, and how much should be 

invested to reduce travel time variability at a specified target (Charlotte et al., 2017). 

However, travel time in most developing countries operates under heterogeneous 

traffic flow conditions with mixed traffic flow. 

Motorized vehicles include two-wheelers, three-wheelers, passenger cars and 

vans, light commercial vehicles, buses, and trucks, and non-motorized vehicles 

include bicycles, tricycles, and pushcarts, many of which share the same road space. 

The determination of travel time reliability needs special attention, due to its 

complexity of traffic interruption, compared to homogenous traffic conditions. 

Moreover, few studies were conducted to analyze travel time reliability in 

developing countries, particularly Tanzania. This research determined travel time 

reliability based on link travel time, waiting time at bus stops, and delay at 

intersections on five main corridors in Dar es Salaam city, by applying buffer time, 
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planning time, standard deviation, and coefficients of variation to evaluate the travel 

time reliability along the five corridors. 

2. 4. Delay Time Variation at the Intersection 

2.4.1. Background of Delay Time 

 

Delay time at intersections is the time lost by a vehicle or driver because of the 

operation of the signal and uncertainty of traffic flow (FHWA, 2005). The 

Transportation Research Board (TRB) (2000) defined delay time as the difference 

between the travel time experienced, with reference to the travel time that would 

result during ideal conditions, in the absence of traffic congestion, incidents, and any 

other vehicle obstacles on the road. Furthermore, delay at signalized intersections is 

the time spent by the vehicles due to signal control and queue length, as shown in the 

Figure 2.2 (Hashim et al., 2017) 

 

Figure 2.2: Delay Types at a Signalized Intersection (Mathew, 2014; TRB, 2000) 

L1 is the free-flow path,  
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L2 is the desired path,  

L3 is the actual path.  

 

Delay at the intersections mostly depends on traffic conditions and time 

difference of the day. The desired path of the vehicle shows the actual progress of the 

vehicle, which includes a stop at a red signal, as in Figure 2.2. The desired path is the 

path when vehicles travel at their preferred speed, and the actual path is the path 

accounting for decreased speed, stops, and acceleration and deceleration. Mathew 

(2014) and TRB (2000) explained that when vehicles approach an intersection, they 

experience different types of delays, such as stopped-time delay and approach time 

delay, as indicated in Figure 2.2. 

2.4.1.1 Control Delay  

A control device, such as a traffic signal or stop sign, causes control delay. It is 

approximately equal to time-in-queue delay plus the acceleration-deceleration delay 

component. Delay time can be analyzed based on a single vehicle, as an average for 

all vehicles over a specified time or as an aggregate total value for all vehicles over a 

specified time. Aggregate delay is measured in total vehicle seconds, vehicle-

minutes, or vehicle-hours for all vehicles that passed during a specified time interval. 

The individual vehicle average delay is generally stated in terms of seconds per 

vehicle for a specified time interval, as illustrated in Figure 2.2. 

2.4.1.2 Approach Delay  

Approach delay includes stopped-time delay, but adds the time lost due to 

deceleration from the approach speed to a stop and the time lost due to re-
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acceleration back to the desired speed, as indicated in Figure 2.2. It is found by 

extending the velocity slope of the approaching vehicle as if no signal existed. 

Approach delay is the horizontal time difference between the hypothetical extension 

of the approaching velocity slope and the departure slope after full acceleration is 

achieved. The average approach delay is the average for all vehicles during a 

specified time. 

2.4.1.3 Stopped-Time Delay  

Stopped-time delay is the time the vehicle is stopped in the queue while waiting to 

pass through an intersection. It begins when the vehicle is entirely stopped and ends 

when the vehicle starts to accelerate, as indicated in Figure 2.2. Average stopped-

time delay is the average for all vehicles during a specified time. 

2.4.1.4 Running Time Delay  

Running time delay is the total time of a vehicle joining an intersection in the 

presence of a queue to discharge across the stop line on departure. Average time in 

queue delay is the average for all vehicles during a specified time. Time-in-queue 

delay cannot be effectively shown using one vehicle, since it requires long 

observations of several vehicles in the queue crossing the intersection.  

2.4 2 Theory of Delay Variability 

 

Population and economic growth have resulted in a higher demand for travel, thus, 

causing mobility challenges in terms of limited capacity on existing urban road 

networks, as well as delay variation at intersections (Li et al., 2016). Understanding 

the vehicle delay variability at intersections is very important for the planning, 
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design, and analysis of signal controls (Fu et al., 2000). The estimation of delay 

variation at intersections provides a comprehensive understanding of urban travel 

time variability. It improves the prediction or estimation of urban travel time more 

accurately (Mathew, 2014a). Charlotte et al., (2017) and Torrisi et al., (2017) argued 

that passengers are not only interested in knowing urban travel times, but also the 

variability of travel times. 

Understanding variability is very important to passengers for better 

organization of their daily and non-daily activities, and to synchronize their 

schedules with other people. Accordingly, the accurate prediction of delay variation 

at intersections is very important. However, its precise estimation is difficult due to 

random traffic flow and other uncontrolled factors. Uncertainties of traffic flow and 

queue length at intersections are the significant factors affecting urban travel time 

variability (Hashim et al., 2017). Furthermore, estimating delay variability at 

intersections has been extensively studied, and several methods have been widely 

used at signalized intersections (Olszewski, 1993; Fu and Hellinga, 2000; Chen et al., 

2017). Webster (1958) demonstrated average delay variability cycle to cycle at 

signalized intersections with homogeneous traffic flow, based on one-lane traffic 

flow, as shown in Equation 2.4.1. 
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       2.4.1 

where, 

d is the average delay time of a vehicle per cycle;  

𝑎 is the proration of cycle length, which is the effective green time; and 

x is the degree of saturation  
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The first part of the Equation 2.4.1 estimates delay time when traffic flow is 

considered to be constant, while the second part estimates delay time when traffic 

flow is considered to be random in the lane. The application of these models to non-

lane in heterogeneous traffic conditions will result in the wrong estimation of delay 

time. Olszewski (1993) investigated delay distribution at signalized intersections by 

considering the number of vehicles arriving, the waiting time, and the discharging 

vehicles at the intersection. The model performed well, but the arrival distributions 

may not correspond to heterogeneous traffic conditions, which are common in 

developing countries. 

 

2.4.3 Measure of Delay Variation at the Intersections  

 

Most cities in developing countries are undergoing fast urbanization, which results in 

increased road traffic. In these cities, traffic, including non-motorized and motorized 

modes of transport, is flowing in the same lane causing a lot of chaos on the urban 

roadways (Anil et al., 2017). The prediction of travel time in urban networks 

becomes more complicated because of travel time variability (Jammula et al., 2018), 

and the major component of urban travel time variations occur at the intersections. 

Zheng and Van Zuylen (2011) analyzed delay time in the urban road networks and 

determined that about 50% of delay time variations were found at the intersections. 

Most cities in developing countries, including Dar es Salaam in Tanzania, 

have mixed traffic, and vehicles can shift laterally from one lane to another, which 

causes physical and travel time variations in urban road networks (Preethi et al., 
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2016). There is no lane restriction adherence during the traffic flow. Moreover, it is 

observed that lack of lane discipline at intersections causes notable lateral 

movements, and vehicles tend to use lateral gaps to move to the front of the queue. 

Also, in most cities of developing countries, like Tanzania, traffic police are used to 

control traffic flow. Traffic flows towards the city centre are given more priority at 

intersections during morning peak hours, and vice versa (during the evening). This 

practice causes excessive delay variations at the intersections. Under these 

conditions, estimating delay variations at the intersections using existing delay 

models, such as those used by Webster (1958), Olszewski (1993), and the TRB 

(2000), developed under homogeneous traffic conditions, will not produce realistic 

estimates if directly applied to heterogeneous traffic conditions. The parameters of 

delay variation mainly depend on the non-deterministic nature of the arrival, 

departure processes, and heterogeneous traffic conditions at the intersection. These 

variables cause more uncertainties and chaos that make prediction of delay time at 

intersections more complicated (Hashim et al., 2017). 

Darma (2005) argues that cycle time, inter-green time, number of phasing 

sequences, and number of lanes are the major variables that influence delay variation 

at signalized intersections, with the assumption that traffic flow is constant. 

Moreover, the stop delay time related to the red phase duration and saturation level 

have been mentioned to be the main factors influencing delay variation at 

intersections (Chen et al., 2013; Cheng, 2015). This is consistent with Webster's 

(1958) delay model that estimates delay variation based on deterministic queuing 

analysis and under-saturated traffic flow with homogeneous traffic conditions at 

intersections. 
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Understanding the vehicle delay variability at intersections provides very 

important information for evaluating signal controls and settings (Fu et al., 2000). It 

has been recognized that the estimate of the delay variability is important in many 

aspects; for example, the delay variability information is applied to estimate the 

confidence limits of mean delay. This provides reliable information regarding signal 

planning by identifying optimal signal settings (Liping Fu and Hellinga, 2006). The 

estimation of delay variability also helps to identify future improvements for signal 

control and LOS at intersections (Li et al., 2016). Providing accurate travel time 

information to road users potentially helps them lessen their travel time, thus, helping 

to reduce urban congestion and yield more stable traffic flows (Zheng and Van 

Zuylen, 2010). 

Charlotte et al., (2017) and Torrisi et al., (2017) argued that passengers are 

not only interested in knowing urban travel times, but also the variability of travel 

times. The understanding of travel time variability enables passengers to better 

organize daily and non-daily activities to match with their daily travel conditions. 

Delay time variations are applied to determine the performance of a signalized 

intersection, i.e., the LOS (Chen et al., 2016). Traditionally, the delay time variability 

at intersections has been measured mostly on freeways, where traffic flow is 

typically dominated by motor vehicles moving in clearly defined lanes 

(Hadiuzzaman et al., 2009); Zheng and Van Zuylen, 2010; Anil et al., 2017). 

Preethi et al., (2016) argue that an accurate and reliable model is the one 

which clearly shows the delay time variation distribution at the intersection. 

Olszewski (1993) developed the Delay Variation Distribution model at signalized 

intersections under homogenous traffic flow conditions. Chen et al., (2016) applied 
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the delay variability model to estimate delay variability at signalized intersections for 

urban arterial performance. Although the model was able to show delay distribution 

at the intersections, it may not be applicable for intersections in cities of developing 

countries, where traffic flow is mixed. In developing countries, delays that individual 

vehicles experience at a signalized intersection are usually subject to large variations, 

due to the randomness of traffic arrivals, interruption caused by traffic signal control, 

and interruption of non-motorised transport (Miller, 1963). 

There is no analytical method available to quantify delay time variation in the 

heterogeneous traffic conditions at signalized intersections, especially in developing 

countries. To address this gap in knowledge, there is a need for developing a Delay 

Variation model that will take into account heterogeneous traffic conditions. The 

evaluation of delay time variability, with respect to heterogeneous traffic conditions 

with interrupted flow, is the main focus of this study. 

2.4.4 Delay Time Variations Analysis  

 

Viti and Van Zuylen (2010) explained that the stochastic delays at signalized 

intersections constitute a large part of total travel time on urban road networks. Thus, 

understanding the delay evolution or delay variability will lead to further insights 

into the variability of urban road travel time and provide additional possibilities for 

travel time estimation. Fu and Hellinga (2000) argued that delays individual vehicles 

experience at a signalized intersection are usually subjected to considerable variation 

because of the randomness of traffic arrivals and interruption caused by traffic signal 

controls. According to Miller (1963), Newell (1965), Akçelik (1988), and Olszewski 

(1993), delay time variation at signalized intersections can be analyzed based on 
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three traffic flow conditions: uniform delay, random delay, and overflow delay, as 

indicated in Figures 2.3, 2.4, and 2.5, respectively. 

2.4.4.1 Deterministic Queuing Model  

 

Fu and Hellinga (2006) evaluated delay time variation at intersections using the 

Standard Deviation model for two traffic flow patterns: highly under-saturated 

conditions and oversaturated conditions. The result indicated there was a high 

variation in delay time during oversaturated conditions. Analysis of delay time 

begins with the accumulation of vehicles arriving (V) and departing time (s) at a 

given signal location, as indicated in Figure 2.3. It shows a total number of vehicles 

arriving and departing at the signalized intersections. Two curves show arriving 

vehicles and departing vehicles. The time axis is divided into periods of effective 

green and effective red, and vehicles are assumed to arrive at a uniform rate of flow 

(v is the vehicles per unit time). The arrival curve represents a constant slope, with 

the assumption that the flow rate between vehicles is constant. 

No previous queue is assumed, and arriving vehicles depart instantaneously 

when the signal is green (i.e., the departure curve is the same as the arrival curve). 

During the red phase, vehicles begin to queue and non-vehicles discharge. Thus, the 

departure curve is parallel to the x-axis during the red interval. At the effective green, 

vehicles in the queue begin to decrease linearly until the second red phase, at a 

constant flow rate called saturation flow rate (vehicles per unit time). For stable 

operations, the arriving vehicles catch up with the arrival curve before the next red 

interval begins (i.e., there is no residual queue left at the end of the effective green), 

as illustrated in Figure 2.3. 
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Figure 2.3 represents the total time that any vehicle (Vi) spends waiting in the 

queue (Wi), given by the horizontal time scale difference between the time of arrival 

and the time of departure. The total number of vehicles queued at any time (Qt) is the 

vertical vehicle scale difference between the number of vehicles that have arrived 

and the number of vehicles that have departed. The aggregate delay for all vehicles 

passing through the signal is the area between the arrival and departure curve, which 

is the total number of vehicles arriving during the study period divided by vehicle 

flow rate. 

 

 

 
Figure 2.3: Uniform Delay Time at the Intersection (Mathew, 2014) 
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Wi is the waiting time for a vehicle arriving during the red signal plus the departure 

time during the green time per cycle; and  

Qt is the total number of vehicles queued at any time. 

2.4.4.2 Calculation of Uniform Delay Model  

Uniform delay is determined with the assumption that the follow rate and departure 

rate of all vehicles was uniform at the intersection, as indicated in Figure 2.3. The 

total delay at each cycle was calculated as the triangular area between the cumulative 

arrival and departure curves (TRB, 2000). The vehicle average delay per cycle is 

shown by Equation 2.4.2. 
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where, 

𝑈d is the average delay per vehicle per cycle;  

𝐶 is the cycle time;  

𝑔 is the green time;  

𝑣 is the flow rate (arrival rate in vehicles per unit hour or second); and  

𝑠 is the departure rate (saturated rate, vehicles per unit hour). 

The uniform delay model ignores the randomness in arrival and considers 

only unsaturated conditions, thus, it overlooks the oversaturated flow conditions. The 

second assumption is that vehicle acceleration and deceleration delays are converted 

into equivalent stopped delay time at the intersection. Furthermore, vehicle queues 

are assumed to be vertical at the intersection line stop, and do not represent the real 
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behaviour of queue traffic flow (Gupta 2009). However, in reality, the model may 

work during off-peak hours, with the assumption that the traffic flow is stable. For 

the case of Dar es Salaam, where traffic flow at intersections is interrupted by non-

motorized vehicles and traffic police, it may not be applicable. Olszewski (1993) 

argues that an accurate estimation of vehicle delay is difficult because of the 

interruption of traffic flow at an intersection. Existing delay models simplify real 

traffic conditions and provide only approximate point estimates of average delay. In 

general, the uniform delay model assumes that arrivals are uniform and that no signal 

phases fail (i.e., that arrival flow is less than intersection capacity during every signal 

cycle of the analysis period). 

2.4.4.3 Random Delay  

Random delay is additional delay, it can be higher or less than the uniform delay at a 

particular intersection, because traffic flows are randomly distributed rather than 

uniform flows. Some of the signal phases fail, as indicated in Figure 2.4. Vehicles 

fail to pass the first cycle during the green phase due to an abrupt increase of traffic 

flow, which exceeds intersection capacity. Therefore, they must wait for the next 

green phase interval to depart (Olszewski, 1993).  

For this study, it was assumed that no queue remained unsaved during the 

entire study period, rather, it is explained in the departure function. This case 

represents a situation in which the overall period of analysis is assumed to be stable 

(i.e., total demand does not exceed total capacity). For these periods, there is a 

second portion of the delay in addition to uniform delay. This portion of delay 

consists of the area between the arrival function and the dashed line, which 

represents the capacity of the intersection to discharge vehicles and has a slope c as 
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indicated in Figure 2.4. This type of delay is referred to as a random delay in isolated 

intersections. Vehicle arrivals are more likely to be random. 

Many stochastic models have been developed for this case, including studies 

by Webster (1958), Miller (1963), Newell (1965), Akçelik (1988, 1993), Hall (1992), 

and Olszewski (1993). 

 

 

Figure 2.4: Delay Time in Random Traffic at the Intersections (Mathew, 2014) 

2.4.4.4 Random Delay Model  

 

The number of vehicle arrivals in a given time interval flow can be represented by a 

well-known distribution, known as a Poisson distribution, and it does not change 

over time. The headways between departure times at the stop line flow are a known 

distribution, with a constant mean. Furthermore, it is well known that temporary 

oversaturation may occur due to the randomness of arrivals, but it is assumed that the 
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system remains unsaturated over the analysis period. Finally, it is assumed that the 

system will remain unchanged for long enough during the running time k.  

Random delay models generally assume that vehicle arrivals follow a Poisson 

distributed model, with an underlying average rate of vehicles per unit time (Cheng 

et al., 2015). The models account for random arrivals, as well as the fact that some 

individual cycles within a difficult period with a v/c < 1.0 could fail due to this 

randomness. This is explained by the formula presented by Webster (1958), as 

shown in Equation 2.4.3. 
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where,  

RD is the average random delay per vehicle (s/veh),  

X is the degree of saturation (v/c ratio), and  

V is the intersection flow rate. 

Webster (1958) modified the above delay formula, whereby the total delay is 

given by the sum of uniform delay and random delay multiplied by a constant, as 

shown in Equations 2.4.4a and 2.4.4b. 
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where,  

RD is the average random delay per vehicle (s/veh),  
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X is the degree of saturation (v/c ratio),  

V is the intersection capacity,  

C is the cycle time, and 

g is the green time.  

2.4.4.5 Overflow Delay 

  

Overflow delay is the additional delay that occurs when the capacity of an individual 

phase or series of phases is less than the demand or arrival flow rate. The discharge 

rate during the green interval fails for a significant time, and the residual, or unsaved 

queue of vehicles, continues to grow throughout the analysis period, as indicated in 

Figure 2.5. 

 
Figure 2.5: Delay Time over Traffic Flow (Mathew, 2014) 
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The difference between T1 and T2 is the period of analysis. 

 

In this case therefore, the overflow delay component grows over time, and at the 

same time, dropped consistently in each cycle by the uniform delay component. 

When demand exceeds capacity (v/c > 1.0), the delay depends upon the length of 

time that the condition exists. During the period of oversaturation, the average delay 

per individual vehicle consists of both uniform delay and overflow delay, as 

indicated by delay model presented by Webster (1958), and shown in Equation 2.4.5.

1
2

T v
OD

c

 
= − 

 
        2.4.5 

where,   

OD is the average overflow delay,  

T is the analysis period time, 

V is the arrival flow rate, and  

C is the road capacity.  

The accurate estimation of delay is difficult because of the randomness of the 

traffic flow process and uncertainty associated with factors affecting intersection 

capacity. Therefore, mathematical models are currently used to predict average 

delays, and are based on simplified assumptions. In general, existing delay models 

assume vehicles arriving follow a Poisson distribution process, which is a constant 

flow rate. Fu and Hellinga (2006) investigated the root source of delay variability at 

intersections by using lognormal distributions. The results indicate that the model 

can be a useful tool for analyzing variations behaviour and evaluating the LOS at an 

intersection. Delay variation is one of the essential performance indicators used to 
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determine the LOS at signalized intersections. It is a focus of this research to 

establish the delay time variation distribution for the five main corridors in Dar es 

Salaam city. 

 

2.5 Travel Time Measures  

Travel time is the time required to traverse a route between any two points of 

interest, and is a fundamental measure of the efficiency of the transportation system. 

Travel time is a simple concept, understood and communicated by a wide range of 

audiences, including transportation engineers and planners, business persons, 

commuters, media representatives, administrators, and consumers. Engineers and 

planners have used travel time and delay studies since the late 1920s to evaluate 

transportation facilities and plan improvements (Webster, 1958). Commuters may 

spend 20 to 30 minutes traveling one-way in their commute from home to work to 

ensure they arrive on time. Various media reports travel times on urban road 

networks and streets by informing road users of potential travel delays, typically 

from 10 to 15 minutes, on different parts of the network. There are various 

techniques used to acquire urban travel time information, based on needs and 

available tools. Travel time measures and approach techniques have been discussed 

in many previous studies (Jiang et al., 2014; Salonen & Toivonen, 2013; Vanajakshi 

et al., 2016). A general overview of the various techniques is provided in the 

following subsections. 

 



59 
 

2.5.1 Measure Techniques of Travel Time  

The existing body of research on travel time suggests that the measurement of urban 

travel time can be categorized into two primary groups: fixed and mobile tools 

(Turner et al., 1998; Zheng, 2011). The first group involves fixed sensors installed 

along the roads, such as Automatic Number Plate Recognition (ANPR), cameras, 

Bluetooth scanners, Inductive Loops Sensors, and Automatic Vehicle Identification, 

to monitor traffic flow. Furthermore, Yeon et al., (2008) suggested that fixed sensors 

can be divided into point and interval sensors. 

2.5.2 Point Sensors  

Point sensors are usually fixed along the roads to capture traffic flow at a specified 

point, as shown in Figure 2.6. Moreover, Mori et al., (2015) categorized point 

sensors into two groups: single induction loop detectors and double loop detectors. 

Single loop detectors consist of a single induction loop, which generates a magnetic 

field enabling detection of the passage of large metallic objects, such as vehicles. 

Information obtained from these sensors includes the number of vehicles passing 

through the intersection (vehicles/hour) and the percentage of time that the detector 

is occupied (occupancy). Krishnamoorthy (2008) predicted urban travel time using 

single Inductive Loop Detectors (ILDs) placed on urban roadways to monitor traffic 

flow. While this approach is effective in measuring urban travel time, it is limited by 

the availability of sensors in the area of the study. 
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Figure 2.6: Traffic Source Data; Point Sensor. (Dutch National data, 2018) 

2.5.3 Double-loop Detectors 

Double-loop detectors consist of a pair of single-loop detectors set close enough to 

each other, as indicated in Figure 2.7. Liu et al., (2005) applied loop detector data to 

develop a macroscopic urban travel-time prediction model. The pair of sensors can 

capture traffic flow, occupancy, travel speed, and vehicle lengths by considering the 

travel time interval between the two sensors (Kwon et al., 2000). However, this 

method of using loop detectors for data collection is very sensitive with respect to the 

distance between the two loop detectors; if the distance is too close, it may not be 

applicable in measuring travel time. 
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Figure 2.7: Double-loop Detectors (Dutch National data, 2018) 

 

Contrary to point sensors, which focus only on one point of the road, interval 

sensors allow the direct calculation of travel time between two points by finding 

differences between entrance and exit times in the road segment. Furthermore, Faghri 

et al., (2014) commented that the combination of fixed and mobile sensor techniques 

can be applied to collect traffic data. As illustrated in Figure 2.8, a combined 

approach may involve floating, testing, or probe vehicles, equipped with sensors 

(Mobile phone or GPS), collecting data in parallel with road sensors to detect 

crossing vehicles at different points in the road network  
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Figure 2.8: Traffic Source Data; Probe Sensor (Dutch National data, 2018) 

 

Vehicle identification techniques can either be done manually or 

automatically, by recording a vehicle’s plate number or stamp marks (Bacon et al., 

2011). The devices detect and recognize vehicles at the beginning and end of the 

segment, whereby travel time is calculated directly from the starting and ending time. 

As shown in Figure 2.9 the pair of sensors is mounted along with roadside beacons, 

such as video cameras, and Bluetooth and Wi-Fi are applied to capture the 

information (Jeong and Rilett 2004). However, this technique may not be applicable 

in most developing countries, due to the high costs of purchasing and installing road 

sensors. 
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Figure 2.9: Traffic Source Data; Interval Sensor. (Dutch National data 2018) 

 

Zheng (2011) described mobile sensors as position detection equipment, such 

as GPS sensors, satellite sensors, and cell phone sensors, that directly provides travel 

time, from point-to-point, on the route crossed by probe vehicles, testing vehicles, 

and floating vehicles. Turner et al,. (1998) categorized mobile sensors into three 

groups: testing, floating, and probe vehicles. These types of vehicles are equipped 

with sensors (i.e., mobile phones or GPS), which are capable of detecting 

information, such as location, direction, and speed at different time intervals as 

indicated in Figure 2.9  (Kwon et al., 2000). The vehicles can be personal cars, 

public transport vehicles, or commercial vehicles (Mori et al., 2015). The difference 

between testing, floating, and probe vehicles is that testing and floating vehicles are 

vehicles that operate under predefined checkpoints and specified routes, for the 

purpose of traffic data collection. Probe vehicles operate on undefined routes, at 
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undefined points, recording and storing traffic flow data at any time. Also, the testing 

and floating vehicles operate under instructions, such as speed, specified route, or 

time of the day, which is quite different from the probe vehicle method. The process 

of data collection using testing, floating, and probe vehicles can be performed 

manually, whereby stopwatches or notebooks are used inside the vehicles to record 

travel time at specified points or routes. 

The main advantage of using the probe vehicle method is that probe vehicles 

can collect extensive travel time information continuously, and at a reasonable price, 

if road sensors are available on the streets where the vehicle operates (Jiang et al., 

2014). Another advantage is that the data collected can be electronically formatted in 

a different format, which assists in data processing and transmission from the 

vehicles to data storage (Gurmu et al., 2014). However, the limitations of this method 

are that probe vehicles involve a high initial cost for purchasing the necessary 

equipment, installation costs, and training of personnel to operate the system 

(Abdalla and Abdel-Aty, 2006). 

Testing and floating vehicles operate under defined driving styles, which 

provide consistent and detailed data that covers the entire study area (Turner et al., 

1998). However, both testing and floating vehicles are subject to a higher risk of 

potential human error, which requires substantial time for checking the quality of 

data. Furthermore, if the data required demands detailed information, the ability to 

store large amount of data is needed, which may not be available (Jiang et al., 2014).  

Many researchers have utilized both fixed and mobile sensor methods to 

collect travel time data. Fixed sensor techniques require a substantial investment in 

road sensors along the urban roads, which are not available in most of developing 
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countries, such as Tanzania (Jain et al., 2012; Sen et al., 2011). However, the mobile 

sensor method (testing, floating, and probe vehicles) is associated with considerable 

initial cost to purchase equipment, as well as installation, maintenance, and training 

costs. These costs are affordable compared to fixed sensors (Bacon et al., 2013; 

Krishnamoorthy, 2008). Therefore, this research applied testing and floating vehicles 

to collect travel time data, while waiting time at bus stops was collected by observing 

and recording the dwell time of a vehicle at the bus stop, along the five main 

corridors in Dar es Salaam.  

 

2.6. Urban Travel Time Conceptual Framework  

 

The travel time conceptual frame explains the main components used to evaluate 

urban travel time. As indicated in Figure 2.10, these components include: travel time 

prediction, travel time reliability, and delay variation. Furthermore, it shows the 

application of these main components to evaluate urban transport system 

performance. 
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Figure 2.10: Urban Travel Time Model Concept 

2.6.1 Summary  

2.6.2 Literature gaps  

The study of modeling travel times in homogenous traffic flow conditions has 

received considerable attention from many researchers. However, there are limited 

studies regarding urban travel time modeling, especially related to developing 

countries, such as Tanzania, where traffic flow is heterogeneous. Alternatively, a 

number of urban travel time prediction models have been established for road 

networks in developed countries, under homogenous traffic conditions. In this 

chapter, urban travel time prediction models, travel time reliability, and delay 

variation at intersections, for heterogeneous traffic flow conditions, are discussed. 
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2.6.2 Methodological gaps 

A state-of-the-art overview of urban travel time prediction models was 

thoroughly discussed, including a discussion on the advantages and disadvantages of 

these models. It appears that most of the existing models did not take into account 

heterogeneous traffic flow conditions (e.g., uncertainty delay at intersections and 

waiting time at bus stops) in developing countries. Moreover, most of the existing 

models, include both model-based and heuristic models, aimed at predicting the 

average travel time. Most research efforts have been directed towards bus travel time 

prediction under scheduled urban transport system.  Moreover, the main component 

of bus travel time is the scheduled delay time at bus stops which is occasion on most 

of the urban transport system in developing countries, including Tanzania. Therefore, 

this research will incorporate these unscheduled delays time at bus stops in the 

prediction model for better prediction of urban travel time. 

 

Therefore, one goal of this research has been developing dynamic bus travel 

time prediction model for determining travel time in a meaningful manner. Also, to 

describe travel time reliability under heterogeneous traffic flow conditions, by 

applying buffer time, standard deviation, coefficient of variation, and planning time.  

Finally, the research attempts to establish a delay variation at the intersections which 

is an essential component of travel time on urban roads. The delays uncertainties due 

to traffic lights and police control have been considered in this research by applying 

probability distribution at intersections. 
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CHAPTER 3 – STUDY AREA AND DATA COLLECTION 

 

3.1 Description of the Study Area 

3.1.1 Study Area Location  

The City of Dar es Salaam is located at 6°48' South, 39°17' East (6.8000, 39.2833) 

on a natural harbor on the eastern coast of East Africa, with sandy beaches in some 

areas. The city's land area is 538 square miles (1,393 square kilometers), with a 

population density of 8,100 people per square mile (3,100 per square kilometer). 

According to the Tanzania Bureau of Statistics, the population of Dar es Salaam 

grew from 6.4 to 6.7 million people from 2019 to 2020, respectively, a 5.24% annual 

growth rate. The commuting area has expanded to 30 Km away from the city center. 

Dar es Salaam encompasses a large regional area, divided into five districts listed in 

Table 3.1. 

Table 3.1: Districts of Dar es Salaam 

District  Population (2012)  Area km²  

Ilala  1,220,611 210 

Kinondoni  929,681 270 

Ubungo  845,368 261 

Temeke  1,205,949 145 

Kigamboni  162,932 507 

Dar es Salaam Region  4,364,541 1,393 

Source: Tanzania based on Population and Housing Census 2012 

Dar es Salaam is a mono-centric structure city that has only one Central 

Business District (CBD), which includes the city center and Kariakoo. The arterial 

roads originate from the residential areas towards the CBD and two outer beltway 

roads, as shown in Figure 3.1. This road network configuration suggests that social 

services and economic activities, such as government and private offices, education 

https://en.wikipedia.org/wiki/Ilala_District
https://en.wikipedia.org/wiki/Kinondoni_District
https://en.wikipedia.org/wiki/Temeke_District
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institutions, supermarkets, financial institutions, and the Dar es Salaam port (import 

and export goods) are located in the city center. Most of the commuters tend to travel 

from the outskirts towards the CBD. This situation causes rapid and unpredictable 

traffic flow towards the CBD during peak hours. Traffic flows in one direction 

during the morning hours towards the city center and vice versa in the evening. As a 

result, there is heavy congestion during the peak hours. 

 

Figure 3.1: Main Corridors in Dar es Salaam City (Field Data, 2019) 
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Traffic congestion occurs at the major trunk roads, including Bagamoyo Road, Old 

Bagamoyo Road, Morogoro Road, Nyerere Road, and Kilwa Road, which are the 

major entrances to the CBD during peak hours in the morning and evening time. 

Furthermore, serious congestion happens at intersections located along these major 

trunk roads, such as Mwenge intersection, Morocco intersection, Selander Bridge, 

Magomeni, intersection, Ubungo intersection, Buguruni intersection, Uhasibu 

intersection, and Tazara intersection. The existing trunk roads in DSM (such as 

Bagamoyo Road, Morogoro Road, Nyerere Road, and Mandela Road) do not have 

alternative routes that can be used as a detour. 

3.1.2 Survey Corridors  

 

The survey was conducted along five main routes: Mbagala-Kariakoo (via Kilwa 

Road), Pugu-Kariakoo (via Nyerere and Uhuru Roads), Mbezi-Kariakoo (via 

Morogoro, Mandela, and Uhuru Roads), Tegeta-Kariakoo (via Bagamoyo, Ali 

Hassan Mwinyi, and United Nation Road), and Kawe-Kariakoo (via Old Bagamoyo 

and Kawawa Roads). These routes were selected because a majority of commuters 

use them when making trips to the CBD, and they have direct connections to the 

residential areas. Also, the routes provide a link between the Dar es Salaam Port 

Authority and other parts within and outside of the country. 

3.2 Research Methodology  

A quantitative approach was adopted for this research, because the study required 

gathering numerical data to perform statistical analyses. The survey was conducted 

to collect link distance, link travel time, delay time at the intersections, and waiting 
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time at the bus stops. This research approach utilizes quantitative research methods 

to predict urban travel time, travel time reliability, and delay variation at the 

intersections. 

3.2.1 Data Collection Methods 

The travel time survey was conducted in February 2017 for the secondary data, and 

from September 2018 to January 2019 for the primary data, on the five corridors in 

Dar es Salaam city. Testing and floating vehicles (commuter buses known as 

Daladala) were used to collect travel time data along the corridors. Surveyors used 

vehicles (Daladala) that operate on the five main corridors: Mbagala-Kariakoo, 

Pugu-Kariakoo, Mbezi-Kariakoo, Tegeta-Kariakoo, and Kawe-Kariakoo. Daladala 

drivers operated based on either the prevailing speed or traffic flow conditions. In 

addition, the selected Daladala were instructed to not overtake other vehicles, but 

instead, to follow behind other vehicles in the traffic stream. The surveyors recorded 

the departure time at the beginning of the route, and the time and distance, using 

odometer readings, at checkpoints (i.e., intersections and bus stops) along the route. 

Surveyors also documented the reason and duration of each stop/delay, and the time 

of arrival at the end of the route. Data for each direction on each route segment were 

recorded separately for the morning peak, evening peak, and off-peak periods.  

The waiting time at the intersections and the bus stops was obtained through 

observation in the field. Arrival and departure times of vehicles at the intersections or 

bus stops were recorded manually for each direction of travel. 

The traffic count data were collected by the JICA, in collaboration with the 

NIT, from the NIT database. A total number of 17 points were surveyed, as indicated 

in Table 3.2. The surveyors counted all vehicles, in both directions, based on type, 
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size, direction, and vehicle purpose. The numbers of vehicles were recorded 

manually on a survey form, and the number of vehicles by direction, and by vehicle 

type, was recorded on a summary form every fifteen (15) minutes. A sample of each 

form is shown in Figures 3.1 and 3.2, Appendix 3.0. 

Table 3.2: Traffic Flow Count Points 

Corridors Survey Time (hrs)  Name of points No. of Points 

Tegeta-

Kariakoo 

14 and 24 Tegeta, Makongo, 

Millenium, Osterbay, and 

Salender 

5 

Mbezi- 

Kariakoo 

14 Mbezi (Mkaa), Kibo and 

Tabata Sukita 

3 

Pugu- 

Kariakoo 

14 Ukonga and Tazara 2 

Mbagala -

Kariakoo 

14 Railway Bridge, Mivinjeni 

and Mbagala Mission 

4 

Kawe - 

Kariakoo 

14 Mlalakua, Mkwajuni and 

Kigogo Sambusa 

3 

Total 17 

 

3.2.2 Survey Duration 

Travel time data were collected on weekdays (Monday to Friday) for each week 

between September 2018 and January 2019, on each of the five study corridors. 

Weekend days (Saturdays and Sundays) were excluded in the sample since 

commuter traffic and traffic flow in the city is very low on the weekends. The 

surveys involved 28 trips per corridor per day, beginning at 06:00 hours and ending 

at 19:00 hours. Each collection period was divided into two groups: off-peak hours 

and peak hours. For the inbound directions (traveling to the CBD), morning peak 



73 
 

hours occurred from 06:00 to 11:00 hours, and off-peak hours occurred from 11:00 

to 19:00 hours. A reverse of traffic flow occurred in the outbound directions, with 

off-peak hours occurring from 06:00 to 14:00 hours, and peak hours occurring from 

14:00 to 19:00 hours. During the data collection period, no major weather issues 

were reported (i.e., rains or floods) that might have affected travel time. Travel time 

data were collected for 14 hours, in one-hour increments, for three weekdays of each 

week in the study period, for both directions of travel (inbound and outbound) on the 

five study corridors. This methodology was used to ensure a sufficient sample size. 

The sample size was obtained by the multiplying the survey time, number of 

directions, number of survey days, and the number of links for each study route. 

Table 3.3 summarizes the travel time data collection effort. 

Table 3.3: Surveyed Area and Duration 

Corridors  Survey Time ( hrs )  Trips  Days Total Trips Links Total Trips  

Tegeta-

Kariakoo  

14 28 3 84 5 420 

Mbezi- 

Kariakoo 

14 28 3 84 3 252 

Pugu- 

Kariakoo 

14 28 3 84 3 252 

Mbagala- 

Kariakoo 

14 28 3 84 2 168 

Kawe - 

Kariakoo  

14 28 3 84 3 252 

Total  420 11 1344 

 

3.2.3  Data Collection Procedures 

The data collection duration was extended to allow surveyors to undergo training, 

overcome personnel issues, conduct equipment troubleshooting, and identify unusual 
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traffic conditions. Supervisors outlined the rules and procedures for data collection to 

avoid biases, particularly for traffic flows that show extreme or unusual behaviour. 

Extreme or unusual conditions, such as heavy rain, severe accidents, unusual delay 

time at the intersections (e.g., traffic police control instead of traffic lights), and 

equipment malfunction (e.g., dead batteries and network status) were noted for 

further reference to ensure the quality of the data collected (Turner et al., 2008).  

Furthermore, qualitative information, such as weather conditions (e.g., sunny, 

rainy), pavement conditions (e.g., dust, potholes), unusual traffic conditions or 

incidents, and media reports about construction occurrences were reported. Other 

special events that might affect traffic flow were also noted during data collection, as 

shown on the sample survey form in Table 3.2, Appendix 3.0. This provided useful 

information during data reduction and analysis.  

  

3.2.4 Surveyors Training  

The attitude and knowledge of surveyors towards data collection play a significant 

role in the quality of the collected data (Faghri et al., 2014). To enable the surveyors 

to collect the appropriate data in the intended area on time, each surveyor was well-

trained to comply with techniques, rules, and procedures, especially with setting up 

survey tools, accurately recording and completing survey forms, and note unusual 

situations. The training was accomplished by doing simple exercises, such as how to 

set and read a stopwatch and how to complete the survey forms. 
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3.2.5. Sample Size  

The sample size refers to the number of observations gathered from the urban trips, 

to represent the entire population of urban trips (Ernst et al. 2012). It explains the 

extent travel times are measured by testing vehicles to represent the mean population. 

Having an appropriate sample size is essential in finding a statistically significant 

result. The larger the sample size, the more reliable the results; however, a larger 

sample size requires more time and money. The statistical sampling methodology 

can determine the minimum required number of testing vehicles that would provide 

reliable link travel time estimates. The minimum sample sizes used ensure that the 

number of trip runs must represent a true average travel time within a specified error 

range of the entire population. For this case, the sample size considered was the 

number of trips made by the probe vehicles. 

Turner et al. (2008) proposed a mathematical model for estimating a 

sufficient number of vehicle tests for collecting travel time data, with the assumption 

that travel time on a particular link is an identically and independently distributed 

random variable, as indicated in Equation 3.2.1. Thus, the number of testing vehicles 

required, based on this model, is computed using Equation 3.2.1. 

2

max

1.96 it
itn





 
=  

 
       3.2. 1 

where, 

 σit is the Standard deviation, 

 nit is the number of sample size,  

 εmax is the maximum relative error, and 

1.96 is the 95% confidence  
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Equation 3.2.1 was employed as a statistical sampling method to obtain a 

minimum number of test vehicles corresponding to a pre-specified permitted relative 

error and confidence level. The method was applied using standard deviation of 

0.657 with maximum error rate of 0.05 and 95% confidence in each direction 

(inbound and outbound) which results to 663 numbers of trips in five in each 

direction. Therefore, from equation 3.2.1 was used to calculate the sample size of the 

five main corridors in Dar es Salaam city as shown in Table 3.4.  

Table 3.4: The Proposed Sample Size 

Name of  Corridors  Trips  Days  Links  Sample 

Tegeta-Kariakoo 28 3 5 420 

Kawe-Kariakoo 28 3 3 252 

Mbezi -Kariakoo 28 3 3 252 

Pugu -Kariakoo 28 3 3 252 

Mbagala-Kariakoo 28 2 3 168 

Total Sample Size    1344 
 

3.2.6  Pilot Survey 

A pilot travel time survey was conducted before the full data collection survey 

began. The purpose of the pilot study was to familiarize the surveyors with the 

collection tools, identify the checkpoints, identify existing or potential problems 

arising during data collection, and determine the necessary resources required. Data 

collected during the pilot survey were used to check the quality of traffic data and to 

adjust the sample size. Furthermore, data obtained during the pilot survey served as a 

benchmark, to be used to adjust the data collected from the field to ensure quality 

(Kumar, et al., 2017). 

3.3 Data Collection 
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3.3.1  Primary Data Collected  

The data were collected hourly, from 6:00 to 20:00 hours on the five main corridors 

which include each link names, link distance, number of bus stops and intersections 

as the route attributes as shown in Table 3.5. 

 

Table 3.5: The Corridors and their attributes 

Corridors Link Name Length (Km)  Bus Stops  Intersections 

Tegeta-

Kariakoo 

Tegeta-Africana 5.5 8 2 

Africana-Mwenge 7.2 9 4 

Mwenge-Victoria 3.4 6 2 

Victoria- Mbuyuni 2.4 2 2 

Mbuyuni-Kariakoo 6.7 7 5 

Mbezi-

Kariakoo 

Mbezi-Ubungo 12.5 12 2 

Ubungo-Buguruni 7.5 11 3 

Buguruni-

Kariakoo 

3.6 7 2 

Pugu-

Kariakoo 

Pugu-Aiport 11.3 15 1 

Aiport-Buguruni 7.5 5 4 

Buguruni-

Kariakoo 

3.6 8 2 

Mbagala-

Kariakoo 

Mbagala-Uhasibu 7.0 10 1 

Uhasibu-Kariakoo 5.0 10 1 

Kawe-

Kariakoo 

 

Kawe-Morocco 7.2 11 1 

Morocco-

Magomeni 

3.8 6 4 

Magomeni-

Kariakoo 

3.2 4 2 
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3.3.2 Secondary Data 

This study used secondary data, which were collected by JICA in collaboration with 

the NIT in 2017 and available in the National Institute of Transport (NIT) database. 

A total number of seventeen (17) points were surveyed, as indicated in Figure 3.6.  

Some of the data were collected in 14 hours and others in 24 hours. Since the travel 

time survey was conducted from 6.00 to 20.00 hrs the data were merged. For 

example, for the case of travel time survey when a trip was made from 6.00 to 8.00 

hrs, the traffic flow data collected at this time was considered the precise traffic flow 

of the time.  

The traffic survey was done in 29 points, whereby 15 points were screened line 

survey, which was conducted across the rivers and railways in the five main 

corridors. The other 14 points were conducted in deferent locations in the five main 

corridors, as in Figure 3.2. 
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Figure 3.2: Traffic Count Points in Dar es Salaam City (Field Data, 2019) 

The five (5) Screen Line Points are Tanzania Port Authority (SL3-12), Airport (SL1-

4), Kamata Shoprite (SL3-11), Jangwani (SL2-7) and Salender Bridge (SL2-6). The 

survey was conducted for 24 hours and for the rest of the Screen Line points and 

Traffic Count, the survey was conducted for 14 hours.  
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3.3.2.1 Traffic Data compositions 

 The secondary data compares different various numbers of modes of transport 

includes from small size to large size, motorized to non –motorized, and low speed to 

high speed as indicated in the Table 3.6 
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Table 3.6: Heterogeneity of traffic flow in Dar es Salaam 

Vehicle 

composition 

Mbezi-Kariakoo Pugu - Kariakoo Mbagala-

Kariakoo 

Kawe- Kariakoo Tegeta- 

Kariakoo 

Inb-Tv 

122580 

Outb-Tv 

117789 

Inb-Tv 

130444 

Outb-Tv 

113292 

Inb-Tv 

101955 

Outb-Tv 

98211 

Inb-Tv 

 

165750 

Outb-Tv 

 

142542 

Inb-Tv 

 

313887 

Outb-V 

 

316932 

Passenger 

Cars 

37.0% 30.5% 31.8% 35.6% 46.4% 50.8% 61.6% 59.0% 44.8% 46.7% 

Tax 0.1% 0.1% 0.6% 0.4% 3.2% 1.0% 1.0% 1.5% 0.1% 0.2% 

Pick-up and 

Van 

2.6% 5.3% 1.8% 2.4% 3.7% 2.9% 4.0% 4.9% 3.7% 4.0% 

Microbus 

(Dala) 

0.3% 0.4% 0.5% 0.4% 0.6% 0.3% 0.7% 0.9% 0.7% 0.5% 

Median (Dala) 13.0% 12.3% 23.0% 23.9% 15.9% 15.1% 4.0% 5.0% 14.0% 12.8% 

Large Bus 3.5% 4.4 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 

Organization 

bus 

1.4% 1.7% 0.7% 0.6% 0.5% 0.8% 0.6% 1.0% 1.5% 0.7% 

2 Axle Trucks 3.5% 8.3% 4.9% 5.4% 2.4% 2.7% 1.7% 2.7% 6.5% 5.7% 

3 Axle Trucks 5.0% 0.7% 1.0% 1.0% 1.2% 1.5% 0.2% 0.0% 1.3% 1.5% 

Heavy Trucks 5.8% 0.6% 0.7% 0.7% 2.7% 2.5% 0.0% 0.0% 1.3% 0.9% 

Bajaj 

(3wheels) 

5.2% 4.5% 2.9% 2.4% 1.4% 1.3% 10.8% 9.5% 7.5% 7.8% 

Motorcycle 22.6% 25.0% 29.5% 25.5% 19.6% 17.3 11.0% 11.0% 17.4% 18.9% 

Non- 

Motorized 

0.6% 0.8% 2.5% 1.8% 3.3% 1.4% 4.4% 4.4% 1.1% 1.0%  
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The data collected were based on the direction of travel, i.e., inbound and outbound. 

Figure 3.3 illustrates the data collection process 

 

Figure 3.3: Primary and Secondary Data Collected in all directions 

3.3.3 Data Collection Instrument 

The traffic flow data were collected using the following instruments as shown in 

Table 3.7. 

Table 3.7: Data Collection Tools 

Supporting Tools Data recoding Tools 

• Dar es Salaam survey map which 

shows the city road networks 

• A list of the checkpoints  

• Survey forms  

• Stopwatch 

• GPS equipment  
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Supporting Tools Data recoding Tools 

• A list of link names showing the start 

and end of the links  

• Bus fare for each surveyor 

• ID Card  

• Survey time table 

• Pencil and rubber  

• Testing vehicle and Daladala 

• One PC computer (PC) and 

lap top computer 

 

3.3.4 Data Processing  

The data gathered from the five main corridors were reviewed and evaluated each 

day for the purposes of noting the issues that emerged. This enabled the researcher to 

build on those issues in the next interactions with respondents to ensure consistency, 

simplification, and harmonization of emerging issues. The data processing started 

with the preparation and organization of all relevant data gathered from the field. All 

recorded data were divided into two groups. The first group was used to train the 

model, and the second group was used to test the model. The data was processed and 

used to model urban travel time, determine route travel time reliability, and 

determine delay variation at the intersections on the five main corridors in Dar es 

Salaam as in Table 3.8 
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Table 3.8: Specific Objectives and Data Required 

Objective  Data Required  Data Collection 

Tools  

Analysis 

Method  

To determine 

the suitable 

dynamic model 

for predicting 

Dar es Salaam 

city travel time   

 

Link Travel Time  

Waiting at the bus 

stop 

Delay time at the 

intersections 

Link length  

Time of the day 

Traffic flow  

Survey forms  

Stopwatch 

GPS equipment  

Pencil and rubber  

Testing vehicle and 

Daladala 

Computers 

XLSTA –Soft 

ware  

ANN Multi-

Linear 

Regression  

Kalman Filter 

Dynamic 

Algorithm  

To establish 

travel time 

reliability under 

heterogeneous 

traffic flow 

condition 

 

Waiting time at the 

bus stop 

Delay time at the 

intersections 

Link length  

 

Survey forms  

Stopwatch 

GPS equipment  

Pencil and rubber  

Testing vehicle and 

Daladala 

Computers 

XLSTA –Soft 

ware  

Buffer index 

Planning Index 

Standard 

deviation    

To determine 

delay variation 

distribution at 

the intersection 

under 

heterogeneous 

traffic flow 

condition  

 

Waiting at the bus 

stop 

Delay time at the 

intersections 

Link length 

Survey forms  

Stopwatch 

GPS equipment  

Pencil and rubber 

Computers 

XLSTA –Soft 

ware 

Probability 

Delay 

distribution   

 
  

3.4 Development of Urban Travel Time Model 

Travel time is an important parameter used to evaluate the performance of urban road 

networks. Urban travel time is influenced by many factors that make prediction of 

travel time a complex task. Direct prediction of urban travel time, using road sensors, 

is limited due to the high cost of installation and maintenance. In addition, applying 

existing models, developed under restricted lane homogeneous traffic flow, will not 

reflect the real traffic flow behavior. Furthermore, direct application of these models 

in unrestricted lane scenarios, particularly in heterogeneous traffic conditions, will 

not result in a reliable prediction.  
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Therefore, this section will present the procedures for developing a new 

urban travel time model. An Artificial Neural Network (ANN), Multiple Linear 

Regression (MLR) model, and a Kalman filter algorithm have been developed and 

compared to obtain an accurate and reliable urban travel time model. The model was 

evaluated and validated based on field data collected from the five main corridors in 

Dar es Salaam city. The overview of this section covers the different steps used to 

develop the urban dynamic travel time model, by examining urban travel time 

reliability and delay distribution at the study intersections. 

3.4.1 Dynamic Travel Time Model  

The travel time that vehicles experience on an urban road involves both free-flow 

travel time and delay time. The free-flow travel time was calculated as the distance 

over the free-flow speed. However, the estimation of delay was more difficult, due to 

various traffic characteristics on urban roadways, as discussed in Chapter 2. 

Providing real and accurate travel time information usually assists road users with 

planning their trips and choosing an appropriate mode of transport. However, precise 

prediction of travel time is a challenging problem, especially in developing countries 

where heterogeneous flow conditions exist and there are no records of information 

about the travel time for travelers. 

Most of the dynamic travel-time prediction models that have been developed 

emphasize link travel time, without taking into account delay time at the intersections 

and waiting time at the bus stops. This section discusses the development of a 

prediction model by comparing MLR and ANN to obtain a suitable baseline model to 

be combined with the Kalman Filter algorithm to produce a dynamic travel-time 

model. Link travel time, traffic flow, link distance, time of day, and intersection 
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delay resulting from bus waiting time at bus stops, both at peak hours and off-peak 

hours, was used as input data into the MLR and ANN models. Both outputs from the 

MLR model and the ANN were evaluated in terms of R square, Root Mean Square 

Error (RMSE), and Mean Absolute Percentage Error (MAPE). 

The highest performance model, in terms of less percentage error, was 

considered as the suitable model for link travel time data. The baseline data, from the 

selected model, were applied as an input to the Kalman Filter dynamic algorithm, in 

collaboration with the previous link travel time, to obtain the dynamic travel time 

prediction model for the next link travel time, as indicated in Figure 3.4. The Kalman 

Filter algorithm was applied to adjust the baseline time data from the MLR or ANN 

models, in collaboration with the previous link travel time. 

 

Figure 3.4: Dynamic travel time prediction Framework 

3.4.2 Data Descriptions  

The data used to develop urban travel time were collected from the five main 

corridors in Dar es Salaam city in 2017 and 2018. The type of data and the associated 

units are listed inTable 3.9. 
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Table 3.9: Data Description 

 

3.4.3 Multi-Linear Regression (MLR) Model  

MLRs are the most common form of linear regression analyses used to build a 

predictive analysis model. Multiple linear regression is used to explain the 

relationship between one continuous dependent variable and two or more 

independent variables, with the assumption that the independent variables are not 

highly correlated with each other. The main advantage of the MLR model is that it 

allows a comparison of many independent variables (x) with one dependent variable 

(y). In addition, it may use different factors and determine the substantial factors 

which have a high influence on urban travel time. However, MLR models have some 

limitations, and mainly use incomplete data, which may result in a wrong conclusion. 

3.4.4 Model Input Data  

The MLR model used data collected from the five corridors in Dar es Salaam city. 

The independent variables in this model included: the bus waiting time at the bus 

Description  Unit Source 

Link travel time  Seconds (sec) Primary Data  

Traffic states (Off-peak or 

Peak hours  

No unit Primary Data 

Delay time at intersections  Seconds (Sec) Primary Data 

Waiting time at the bus stops  Seconds (Sec) Primary Data 

Link distance  Kilometre (Km)  Primary Data 

Traffic Flow volume  Number of the vehicle per hour 

(No.Veh/hr) 

Secondary Data  
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stop, delay time at the intersections, link distance, traffic volume, peak hours, and 

off-peak hours. The dependent variable was the travel time in the links. The data 

were divided into two sets, with 75 percent of the data used to train the model, and 

25 percent of the data used to test the model. The Microsoft XLSTA application was 

used to analyze the data and evaluate the MLR analysis Model, as indicated in 

Equation 3.4.1. 

𝑇𝑇𝑠𝑒𝑐 = 𝑎𝑋1 + 𝑏𝑋2 + 𝑐𝑋3 + 𝑑𝑋4 + 𝑒𝑋5 + 𝑊   3.4.1 

where, 

𝑇𝑇sec is the linked travel time,  

𝑋1 is the traffic state (peak hour and off-peak hour are the nominal data), given a 

value of 1 and 0 for peak hours and off-peak hours, respectively,  

𝑋2 is a the bus waiting time at the bus stops,  

𝑋3 is the delay time at the intersections,  

𝑋4 is the link travel distance,  

𝑋5 is the traffic volume,  

𝑎, b, c, d, and e are variable coefficients, and 

W is the constant parameter.   

3.4.5 Model Performance  

The prediction results were evaluated in terms of prediction accuracy by the 

following three measures: the mean absolute error (MAE), the MAPE, and the 

RMSE. Each measure was calculated as shown in the Equations 3.4.2, 3.4.3, and 

3.4.4. 
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Where  

𝑡𝑏𝑠𝑒𝑟𝑣𝑒𝑑  is the observed bus travel time,  

𝑡𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑   is the predicted bus travel time, and  

 𝑁 is the number of bus trips observed. 

3.4.6 Artificial Neural Network  

ANN has been widely applied in solving transportation problems because of its 

ability to manage complex and nonlinear relationships between predictors that arise 

from large amounts of data, specifically in predicting urban travel time (Bai et al., 

2015). It is this unique ability that makes applying an ANN to predict travel time on 

the five main corridors in Dar es Salaam city appropriate, especially because of non-

linearity between factors affecting urban travel time and travel time itself. Fan and 

Gurmu (2015) applied the ANN model to predict urban travel time. The results 

indicated that the models can be used to implement in the Information Advance to 

Public Transport System. Furthermore, Amita et al., (2016) predicted bus travel time 

using an ANN, and the results revealed that the ANN model outperformed the other 

models in terms of accuracy and robustness. However, the ANN model is trained 
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offline, yet it is applied to provide real-time information. The accuracy of the ANN 

model mainly depends on a sufficient amount of data. 

3.4.6.1 The Network Architecture  

ANNs are computing models that process information by replicating the way the 

biological nervous system functions, such as brain process information (Al-Duais et 

al., 2013). The network contains a large number of neurons, which are highly 

interconnected with each other and work together to solve a specific problem (Amita 

et al., 2015). The ANN architecture is composed of the input layer, hidden layers, 

and the output layer. The neurons in the input layer are arranged in an orderly 

manner for prediction, which together, forms the input layer. It is a point where the 

external data are fed, such as distance, delay time at intersections, and link travel 

time, as indicated in Figure 3.9. The input layer and the hidden layer neurons are 

connected by lines with weights, and each connection output provides input to 

another neuron. In each connection between input and hidden neurons, there is a 

connection weight so that the hidden neuron receives the product of the value from 

the input neurons. A neuron in the hidden layer takes the sum of its weighted inputs 

and then applies activation functions, such as sigmoid or Hyper-tangent functions, to 

the sum. The results from the activation function then become the input to other 

neurons of the hidden or output layer. The output neuron takes the weighted sum 

from the hidden layer as the input of the output neuron and then applies an activation 

function to the weighted sum. The result of this function becomes the output for the 

final output of the ANN. The ANN architecture explains how neurons group together 

and how they interconnect with one another, as well as how the model layers are 

arranged, as shown in Figure 3.5. 
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Figure 3.5: The Artificial Neural Network Architecture (Da Silva et al., 2017) 

 

Input Layer  

The input layer possesses the neurons that receive the initial data from external 

sources for further processing by subsequent layers. The input layer is the first step 

of entering data into the workflow for the artificial neural network. 

Hidden Layers  

The hidden layers are the layers hidden in between the input and output layer, since 

the output of one layer is the input of another layer. The hidden layers perform 

computations on the weighted inputs and produce a net-input that is applied to the 

activation functions to produce the actual output. 

Output Layer  

This is the last layer that produces the result of given inputs; it is responsible for 

producing and presenting the final network outputs, which results from the 

processing performed by the neurons in the previous layers (hidden layer).  
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Initial weights  

The initial weights of the model were configured by XLSTAT software 

automatically. The value of weight can be any real number which automatically set   

by XLSTAT software, that used to initiate the values of the parameters in neural 

network models prior to training the models.The more training time will be required, 

if large  value of weights will be nominated. Therefore, during the training process 

the initial weight will be adjusted to reach the optimum weight parameters thus yield 

the minimum mean squared error 

3.4.6.2 ANN for Travel Time Prediction  

The same input data was used in the ANN model as was used in the MLR model. 

The ANN was applied to predict link travel time, as shown in Figure 3.10, and 

consists of four (4) layers: one input layer with five (5) neurons, one (1) hidden layer 

with 15 neurons, one (1) hidden layer with 10 neurons, and one output layer with one 

(1) neuron. The input layer, hidden layers, and output layer are connected by 

networks (synapses), which carry values known as weights. The input layer contains 

five variables: X1, X2, X3, X4, and X5. The output layer possesses one dependent 

variable, which is TT. The X1 variable is traffic state data that is composed of two 

traffic flow states, peak hours and off-peak hours. The peak hour periods were 

observed from 6:00 to 11:00 for the inbound direction, and 15.00 to 20.00 for the 

outbound direction. Off-peak hours were observed from 11:00 to 14.00 for the 

inbound direction and 6:00 to 15.00 for the outbound direction 
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3.4.6.3 XLSTAT Software  

The XLSTAT software was used to simulate urban link travel time. XLSTAT is the 

statistical analysis add-in in Excel that offers a wide variety of functions to enhance 

analytical capabilities. It is compatible with all Excel versions, including Microsoft 

versions 2003 to version 2016 (2011 and 2016 for Mac). XLSTAT-R has option 

tools with a neural net dialog box, where travel time for the five corridors was 

inserted as a dependent variable, and five variables, X1, X2, X3, X4, and X5, were 

inserted as independent variables, as shown in Figure 3.6. 

 

Figure 3.6: XLSTAT Software 

 

The input data used for training and testing the models were normalized 

because the contribution of each input variable greatly depends on the value size of 



94 
 

the other input variables. For example, if the value of the first variable ranges from 0 

to 1, and the second variable ranges from 10 to 3000, then, the second variable will 

dominate the first variable. Therefore, to avoid this confusion, all input and output 

variables were scaled from 0 to 1 using Equation 3.4.5 

Min

Max Min

X X
Y

X X

−
=

−
        3.4.5 

where,  

Y is the normalized value,  

X is the targeted variable,  

Xmin is the minimum value of a variable, and 

Mmax is the maximum Value of a variable.  

 

The activation function is introduced as a non-linear relationship between the 

input layer and the output layer. The sigmoidal function, such as logistic and tangent 

hyperbolic, is common because of its ability to normalize the input values to the 

range from negative one to one (-1, 1), as indicated in Figure 3.7. 

 

Figure 3.7: Artificial Neural Network Activation Function (Fan and Gurmu 2015) 
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Most researchers have preferred to use logistic and tangent hyperbolic to 

predict urban travel time, because they can produce positive and negative values and 

are easier in training (Fan and Gurmu, 2015; Amita et al., 2016; Čelan and Lep, 

2017; Zhu et al., 2018). This research used the tangent hyperbolic function as an 

activation function, whose values range from a negative one to one (-1, 1), as in 

Equation 3.4.6. 

( )
x x

x x

e e
x

e e


−

−

−
=

+
           3.4.6  

where,  

𝜑(𝑥)   is the activation function, and  

𝑒𝑥 is the natural logarithm of variable x 

The training proposed in this model is a resilient back-propagation algorithm 

that is commonly used in many studies dealing with urban travel time prediction (Fan 

and Gurmu, 2015; Amita et al., 2016 and Al-Duais et al., 2013). The main objective 

of the training is to prove weights (wij) that minimize the mean square error, as 

shown in Figure 3.8. 

 

Figure 3.8: Artificial Neural Networks Model Training Process (Da Silva et al., 

2017) 
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Training and Setting Process of Artificial Neural Network  

The XLSTAT- neural net toolbox was set as follows:  

Number of neurons per hidden layers: 15, 10;  

Threshold: 0.01;  

Maximum steps: 100000;  

Repetitions: 1;  

Algorithm type of algorithm: (Resilient backpropagation) RProp+; 

Error function: Squared errors;  

Activation function: Tangent hyperbolic; and 

Training Testing and Validation, 

Validation and testing of the neural network are essential to justify the 

reliability of the ANN model and verify if it is sufficient for predicting urban travel 

time. Therefore, the collected data were divided into two sets. One set was used for 

training the model, and the other set was used to validate and test the model during 

the model development. The validation processes took place during model 

development to determine the stopping point of the training process. Although there 

is no general formula for portioning the sample data, several factors should be 

considered during the division of the data, such as the type of data and sample size. 

After the data cleaning, 75 percent of data were used for training the model 

and 25 percent of the data were used to test and validate the model. This has been 

adopted by many researchers (Jiang et al., 2014; Bai et al., 2015; Fan and Gurmu, 

2015). During the training and learning process, weights and biases were adjusted 

automatically in the hidden layers (Amita et al., 2015). The input data, X1, X2 X3 

X4 and X5, were applied as input data after the training process. The output was 
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connection lines and their weights, neurons hidden layers, and the input layer, as 

indicated in Figure 3.9. 

 

Figure 3.9: Artificial Neural Network Model 

 

TTsec is the link travel time,  

𝑋1 is the traffic states (Peak hours and off-hour are the nominal data), which are 

given a value of 1 and 0 for peak hours and off-peak hours, respectively,  

𝑋2 is the bus waiting time at the bus stops,  

𝑋3 is the delay time at the intersections,  

𝑋4 is the link travel distance,  

𝑋5 is the traffic volume,  

𝑊𝑖j is the synaptic weights connecting the 𝑖th input to the 𝑗th neuron which is 

represented by black numbers,  
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𝑏𝑗 is bias value or error term which is presented by blue numbers. 

 

The final output of this model is to link travel time. The prediction results 

were evaluated in terms of prediction accuracy using three measures: the MAE, the 

MAPE, and the RMSE. 

3.4.7 Dynamic Model Descriptions  

The dynamic model consists of two main components: the first component is 

the ANN model estimating the baseline bus travel times in each route link; the 

second component is the Kalman filtering dynamic algorithm; the output from first 

component has been adjusted to next link travel. The rate of change travel time in the 

first link is not the same as the second link; meaning that the system is dynamic. 

Therefore, to address this phenomenon, the dynamic model has been introduced to 

describe the relationship between input and output.  

The travel time for the first link is not correct, rather it is accompanied by 

random errors (or uncertainty). These errors come from the estimated model (ANN) 

know as Estimates Noise. Likewise, the dynamic model (Kalman Filter) is also 

associated with some errors (or uncertainty) called a Process Noise caused during the 

prediction of next link travel time. The sum of Measurement Noise and the Process 

Noise is known as extrapolated estimate uncertainty (variance) transport system. To 

address precisely next link travel time, Kalman Filter dynamic algorithm has been  

introduced to  predict travel time, which is widely applied to predict urban dynamic 

travel time (Fan and Gurmu, 2015; Bai et al., 2015; Jiang et al., 2014)  

The next link travel time has been reckoned by applying Kalman Filter 

dynamic algorithm using current estimated travel time from Artificial Neural 
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Network and previous link travel time or initial link travel time obtained from the 

earlier stage.  

3.4.7.1 Kalman Filter Dynamic Algorithm  

Initial stage  

• Previous process error is initialized  (F) in the previous link (Xk-1) 

•  Estimate error is initialized (standard deviation 𝛿) in the previous link(Uk-1)   

•  Estimate travel time of current link is initialized (T1-0 )  

•  Estimate error is initialized through standard deviation  (V) in the current link(U)   

• The extrapolated estimate uncertainty (P0-1),  as indicated in equation 3.4.7  

•  Predicted travel time in the next link (T1-1) 

 

𝑃1−0 = 𝛿2 + 𝐹        3.4.7 

where, 

𝑃1−0   is a extrapolation error covariance,  

𝛿2 is a initial variance for the previous link,and 

𝐹 is a initial Previous process error for the previous link  

𝐾𝐺0 =
𝛿2+𝐹

(𝛿2+𝐹)+𝑉
        3.4.8 

where,  

𝐾𝐺0   is initial Kalman Filter Gain,  

𝛿2 is a initial variance for the previous link,  

𝐹 is a initial Previous process error for the previous link ,and 

𝑉 is a initial estimate error for the current link. 
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First stage  

𝑇1−1 = 𝑇1−0 + 𝐾𝐺0 (𝑇1−1 + 𝑇1−0)       3.4.9 

where, 

𝑇1−1   is the next link travel time from ANN-KF model(Xk-1) 

𝑇1−0  is estimated travel time from ANN model from current  link (Xk) 

𝐾𝐺0  is the Kalman Filter Gain from  previous link (Xk-1) 

New Estimate Error  

𝑃1−1 = (1 − 𝐾𝐺0)𝑃1−0       3.4.10 

Where, 

𝑃1−1    is a new extrapolation error covariance in the current link (Xk),  

𝐾𝐺0  is the Kalman Filter Gain from  previous link (Xk-1),and  

𝑃1−0   is a extrapolation error covariance from the previous link (Xk-1), 

Second Stage (The next iterations) 

Current Filter Gain as in equation 3.4.11 

𝐾𝐺1 =
(1−𝐾𝐺0)𝑃1−0+𝐹

((1−𝐾𝐺0)𝑃1−0+𝐹)+𝑉
       3.4.11 

 

Next link travel time as in equation 3.4.12 

𝑇2−2 = 𝑇1−1 + 𝐾𝐺1(𝑇2−2 − 𝑇1−1)       3.4.12 

New Estimate Error as in equation 3.4.13  
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𝑃2−2 = (1 − 𝐾𝐺1)𝑃1−1       3.4.13 

 

ANN-KF Dynamic algorithm Demonstration : 

• Previous process error initialized  (F) in the previous link (Xk-1) is 0.0001 

•  Estimate error initialized (standard deviation R) (B00) in the previous link(Uk-1) 

was  0.001  

•  Current link is initialized (T1-0 ) is  30 

•  Estimate error initialized through standard deviation  (V) in the current link(U) is 

100  

Figure 3.14 represents the number of links from Lo to Ln with current baseline time in 

each link from T(0-A) to T(n-A) . The Kalman Filter dynamic algorithm applied as 

illustrated in a Equations 3.14 (a), (b) and (c) to predict next link travel time T(o-AF) to 

T(n-AF) which determined by  Kalman Filter Gain (KG).   

 

 

 

 

 

 

 

 

L=Road link 

𝑇(0−𝐴) = Initial link travel time (ANN model)

   

             𝐿 0                         𝐿1                                       𝐿2                               𝐿𝑛 

Figure 3.10: ANN-KF model application 
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𝑇(1−𝐴𝐹)= Future link travel time (ANN-KF Model 

 

𝐿1; 𝑇(1−𝐴𝐹) = 𝑇(1−𝐴)+𝐾𝐺𝑜 ( 𝑇(1−𝐴) − 𝑇(0−𝐴))        3.4.14a 

 

𝐿2; 𝑇(2−𝐴𝐹) = 𝑇(2−𝐴)+𝐾𝐺1 ( 𝑇(2−𝐴) − 𝑇(1−𝐴))           3.4.14b          

 

𝐿𝑛; 𝑇(𝑛−𝐴𝐹) = 𝑇(𝑛−𝐴)+𝐾𝐺𝑛−1 ( 𝑇(𝑛−𝐴) – 𝑇(𝑛−1−𝐴))       3.4.14c          

 

3.4.7.2 Model Performance  

Correlation Coefficient (r)  

A correlation between the variables indicates that as one variable changes in value, 

the other variable tends to change in a specific direction. It is a measure of how well 

a model can describe the relationship between the observed link travel time and 

predicted link travel time (Kumar et al., 2017). The quantity r, called the linear 

correlation coefficient, measures the strength and the direction of a linear 

relationship between two variables. The value of r ranges from -1 to +1. The + and – 

signs are used for positive linear correlations and negative linear correlations, 

respectively. In this study, a scatterplot was used to check the relationship between 

pairs of observed link travel time against predicted travel time from the ANN model, 

and the ANN model against the ANN-KF model. 

3.4.7.3 Model validation  

Model validation is the process by which model output is compared to real-world 

observations (link travel time) to judge the accuracy of the model and determine if it 

corresponds with reality (Fan and Gurmu, 2015).  
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The model performance was measured by comparing a pure ANN with the 

integration of ANN and the Kalman Filter dynamic algorithm (ANN-KF). The ANN-

KF and ANN models were evaluated using the RMSE and MAPE. The RMSE and 

MAPE determined the fitness or deviation of the model from the actual travel time 

observed in the field. The calculation of MAPE and RMSE is described in Equations 

3.4.13 and 3.4.14, respectively. 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑇𝑇𝑜𝑏−𝑇𝑇𝑝𝑒𝑑

𝑇𝑇𝑜𝑏
|𝑛

𝑖−1       3.4.13 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ |

𝑇𝑇𝑜𝑏−𝑇𝑇𝑝𝑒𝑑

𝑇𝑇𝑜𝑏
|𝑛

𝑖−1       3.4.14 

The model which scored a small error was considered a suitable model for 

predicting urban travel time under heterogeneous traffic flow conditions, particularly 

in Dar es Salaam city  

3.5. Establishment of Travel Time Reliability  

3.5.1 The Concept of Travel Time Reliability  

The application of travel time reliability is based on the perspective of the operators 

and users. Users focus on how the variability of travel time is experienced, while 

operators focus on the quality of the road network (Bhouri et al., 2016). The diversity 

and geographical spread of socio-economic activities in cities of developing 

countries have caused travelers to rely primarily on transport services. The quality of 

accessibility to transport services depends primarily on travel time reliability. Travel 

time reliability is a valuable tool for evaluating transport service quality, operating 

costs, and system efficiency. 
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3.5.2 Reliability Definitions  

Travel time reliability relates to how travel times for a given trip time perform over 

time. It is a measure of the amount of delay time users experience in the 

transportation system at a given time (Lyman and Bertini, 2008). Measures of travel 

time reliability attempt to quantify the variability in travel times across different days 

and months, and the variability across different times of the day (Vanderval et al., 

2014). Furthermore, reliability is the measure of the extent to which external events 

influence travel times. The impact of the external factors have great influence on 

congestion level, road infrastructures, and trip variability (FHWA, 2010). Taylor and 

Susilawati (2012) argue that travel time reliability is the ability of the route to 

provide transport service under given environmental and operational conditions at a 

stated time. Therefore, factors, such as time of day and the nature of traffic, have a 

more significant influence on urban travel time.  

3.5.3 Analysis of Travel Time Reliability  

There are two common methods (statistic range and buffer time) used by many 

researchers to analyze urban travel time reliability (Chien and Liu, 2012; Bhouri et 

al., 2016; Lu, 2017). These methods are discussed in the following sections. 

3.5.4 Statistical Range Methods  

Travel time reliability was analyzed using different techniques, such as standard 

deviation, coefficient of variation, and the 95th percentile travel time. However, the 

limitation of applying these techniques is that the interpretation and implementation 

may not be straightforward for non-experts, and as a result, it might be a less-

effective communication tool. 
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3.5.4.1 Standard Deviation (STD)  

The standard deviation (STD) is very useful in situations where there is a need to 

look at travel time variability around an average value. The greater the values of 

standard deviation, the more the spread in travel time variation, the result of which is 

less reliability (Guessous et al., 2014). STD was computed using Equation 4.2.1. 

 

𝑆𝑇𝐷 = √
1

𝑛−1
∑ (𝑇𝑇 − 𝑀)2𝑛

𝑖=1       4.2.1 

where,  

𝑆TD is the standard deviation,  

𝑛 is the number of trips observed, 

𝑇𝑇 is a travel time observation, and 

M is the mean travel time.  

3.5.4.2 Coefficient of Variation (CV)  

The coefficient of variation (CV) is a ratio of the STD over the mean travel time, as 

shown in Equation 3.5.2. It represents the percentage of the travel time variation 

based on mean travel time. 

 

CV =
STD

M
         3.5.2 

where,  

𝐶V is the coefficient of variation,  

𝑆TD is the standard deviation, and  

𝑀 is the mean travel time  
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3.5.4.3  95th Percentile Travel Time  

Travel time reliability can be determined using percentile travel time, such as the 95th 

percentile. The 95th percentile of travel time is the estimation of travel time that 95 

percent of the sample travel times experienced in the link. This is the difference 

between the mean and the 95th percentile travel time. The 95th percentile is estimated 

based on the bad delays travellers experienced in the route travel (Lu, 2017). These 

bad delays may be caused by traffic congestion, weather conditions, traffic control, 

and road incidents (Kuang et al., 2013). The 90th or 95th percentile travel times were 

reported in minutes in order to be easily understood by commuters in their daily trips. 

 

3.5.5 Buffer Travel Time  

Buffer time (BT) is the extra time travelers add to the in-vehicle time, including 

waiting time at the bus stops and the intersections (Russell, 2014). It explains the 

spare time to be added on an average trip, based on variations. Travelers may 

consider this as a high probability of arriving on time, as indicated in Equation 3.5.3. 

The higher the value of travel time variation, the less travel time reliability (Bharti et 

al., 2018). Furthermore, the high skew of the normal distribution curve indicates the 

stability of route travel times. Buffer travel time is calculated using Equation 3.5.3 

𝐵𝑡 = 𝑡𝑡95 − 𝑡𝑡50        3.5.3 

where, 

Bt is the additional time above the average travel time ( tt50 ), 

tt95 is the 95th percentile travel time, and  
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tt50 is the average travel time 

3.5.5.1 Buffer Index  

Buffer Index is the difference between the 95th percentile travel time and the average 

travel time, normalized by the average travel time. Buffer Index is calculated using 

Equation 3.5.4 

95 50

50

tt tt
BI

tt

−
=         3.5.4 

where 

𝐵𝑖 is the buffer index time,  

𝑡𝑡95 is the 95 per cent of sample travel times, and 

𝑡𝑡50  is the 50 percent  of sample travel times. 

3.5.5.2 Planning Time Index (PTI)  

Planning time (PT) is the reasonable travel time that passengers use to be sure of 

arriving at their destination on time. It differs from the Buffer time index by 

including typical delay, as well as unexpected delay in in-vehicle travel time. For 

instance, a planning time index of 1.3 implies that passengers should add 30 percent 

to the average planning time to ensure on-time arrival. It gives the total time needed 

to plan for a 95 percent on-time arrival, compared to reasonable travel time. The 

planning time index (PTI) is computed as the 95th percentile travel time (TT95) 

divided by free-flow travel time (TTf), as shown in Equation 3.5,5. 

95

f

tt
PTI

tt
=          3.5.5 
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The 95-percentile value of travel time is considered as a reference value for 

the BI and PTI indicators, because they take into account extreme travel time delays 

compared to standard deviation.  

Several previous studies indicate that travel time reliability can be estimated 

using statistical data and buffer time. (Bhouri et al., 2016; FDOT, 2016; FHWA, 

2010; Chen et al., 2009). These methods are very simple and flexible to estimate 

travel reliability using various ranges of statistical data (Li et al., 2016). Therefore, 

this research applied statistics and buffer methods to estimate travel time reliability 

by considering the route travel time on the five main routes, including in-vehicle 

travel time, waiting at the bus stops, and waiting time at the intersections. This study 

also took into account the standard deviation, coefficients of variation, 95th percentile 

travel time buffer, and planning time on the five main routes in Dar es Salaam. 

3.5.6 Data Used  

The travel time data were collected on the five main routes: Mbagala-Kariakoo (via 

Kilwa Road), Pugu-Kariakoo (via Nyerere and Uhuru Roads), Mbezi-Kariakoo (via 

Morogoro, Mandela, and Uhuru Roads), Tegeta-Kariakoo (via Bagamoyo, Ali 

Hassan Mwinyi and United Nation Road), and Kawe-Kariakoo (via Old Bagamoyo 

and Kawawa Roads). The travel time data were collected over five weekdays 

(Monday, Tuesday, Wednesday, Thursday, and Friday). Weekends were excluded in 

the sample since most people stay at home on Saturdays and Sundays, resulting in 

very low traffic flow in the city.  

The surveys conducted between October 2018 and January 2019 managed to 

collect data in twenty-eight (28) trips per day. In other words, data was collected in 

fourteen (14) trips per day per direction. The survey period was 6:00 to 19:00 hours, 
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and was divided into two groups, off-peak hours and peak hours. For the inbound 

directions, peak hours were from 6:00 to 11:00 hours, and off-peak hours were from 

11:00 to 19:00 hours. For the outbound directions, off-peak hours were from 6:00 to 

14:00 hours, and peak hours were from 14:00 to 19:00 hours. During this period, no 

major weather issues were reported (i.e., rains or floods) that might have affected the 

travel time. Travel time data were collected for three weekdays, each hour on the five 

main routes in both directions (inbound and outbound), for a 14-hour duration. 

Weekend days were excluded. This methodology was used to ensure a sufficient 

sample size was obtained.  

The sample size per route was obtained by the multiplication of survey time, 

number of directions, survey days, and number of links, as indicated in Table 3.10. 

Table 3.10: Survey Links and Time 

Corridors  Survey Time  Directions Survey Days  Links Total Trips  

Tegeta-Kariakoo  14 2 3 5 420 

Mbezi-Kariakoo 14 2 3 3 252 

Pugu-Kariakoo 14 2 3 3 252 

Mbagala-Kariakoo 14 2 3 2 168 

Kawe-Kariakoo  14 2 3 3 252 

Total Number of the trips  1344 

 

The survey time period was 6:00 to 19:00 hours for all five main routes. Data 

collected included: travel time, delay time at the intersections, and bus waiting time 

at the bus stops, as shown in Table 3.11. Commuter buses (Daladala) operating along 

these routes were used as road sensors for traffic data collection. 
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Table 3.11: The Main Feature in the Five Corridors 

 

 

The data were analyzed using XLSTAT software, which is powerful and 

flexible tool that can be integrated with Microsoft Excel The software was applied to 

analyze travel time reliability on the five corridors. Route travel time, waiting time at 

the bus stops, and delay time at the intersections were used to estimate travel time 

reliability.  

3.5.6.1 Determine Travel Time Reliability  

Route travel time reliability shows the relation between high delay time in a day and 

normal delay time that passenger’s experience. Several researchers have used the 

STD, 95th percentile, CV, buffer time, and planning time to measure travel time 

reliability (Bharti et al., 2018; Bhouri et al., 2016; FHWA, 2010). Therefore, this 

Corridors Link Name Link Length 

(Km) 

 Bus 

Stops 

Intersections 

Tegeta-

Kariakoo 

Tegeta-Africana 5.5 8 2 

Africana - Mwenge 7.2 9 4 

Mwenge -Victoria 3.4 6 2 

Victoria - Mbyuni 2.4 2 2 

Mbuyuni - Kariakoo 6.7 7 5 

Mbezi- 

Kariakoo 

Mbezi - Ubungo 12.5 12 2 

Ubungo- Buguruni 7.5 11 3 

Buguruni-Kariakoo 3.6 7 2 

Pugu- 

Kariakoo 

Pugu-Aiport 11.3 15 1 

Aiport-Buguruni 7.5 5 4 

Buguruni-Kariakoo 3.6 8 2 

Mbagala- 

Kariakoo 

Mbagala-Uhasibu 7.0 10 2 

Uhasibu-Kariakoo 5.0 10 2 

Kawe - 

Kariakoo 

 

Kawe- Morocco 7.2 11 2 

Morocco-Magomeni 3.8 6 4 

Magomeni-Kariakoo 3.2 4 2 
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study applied the aforementioned techniques to estimate reliability of route travel, 

waiting time at the bus stops, and delay time at intersections on the five study 

corridors.  

Route reliability was analyzed using buffer time and planning time to 

determine reliability during the off-peak and peak hours, in both directions. Buffer 

time (BT) is the extra time users add to the average travel time to ensure on-time 

arrival, with 95 percent confidence, while taking into account the existing travel time 

situation. This study also determined the extra time needed by passengers to be 

added to the average travel time to ensure they arrive at their destination on time 

when traveling the five main corridors. 

The buffer time index shows the ratio to be applied to the normal travel time 

to ensure passengers arrive on time. In contrast, the planning time index represents 

how much total time a traveler should allow to ensure on-time arrival.  

Planning time (PT) is the total time needed to ensure travelers arrive on time, 

with confidence of 95%, compared to free-flow travel time. The planning time index 

(PTI) is established by applying the 95th percentile travel time (TT95) divided by 

free-flow travel time (TTfree-flow).  

3.6 Delay Variation Distribution at the Intersection  

3.6.1 Introduction  

The ability to quantify delay variation at intersections is a very crucial component in 

travel time prediction. Accurate travel time prediction is essential for road users, 

transport operators, engineers, transport planners, and signal control design. The 

random fluctuation and interruption caused by signal control at an intersection causes 
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the analysis of delay time at the junction to be complex. Researchers are applying 

several techniques to determine delay time variation at intersections. These 

techniques show reliable results for delay time variation, especially for homogenous 

traffic flow conditions (Chen et al., 2017). However, no studies have investigated the 

delay time distribution at intersections with mixed traffic flow in developing 

countries. This section is focuses on developing delay time distribution under 

heterogeneous traffic flow conditions at intersections in the City of Dar es Salaam.  

3.6.2 The Concept of Modeling Delay Variability at Intersections  

Most of the models developed in previous studies focused on predicting average 

delay variation (Olszewski, 1993; TRB, 2000; Chen et al., 2017). These models 

investigated the delay distribution based on the initial queue and the number of 

vehicles arriving at the intersections, with the assumption that queues and the number 

of arrivals follow a certain distribution, such as the Poisson distribution (Olszewski, 

1993). However, delay variation is an important parameter that is used in designing 

and improving the level of service (LOS) at intersections. The concept of intersection 

delay can be described as shown in Figure 3.15. The intersections in this study are 

described as the distance from point B to point C. Intersection delay time refers to 

the moment a vehicle enters at point B to the moment it leaves at point C (see Figure 

3.11). 
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Figure 3.11: Schematic diagram of traffic flow at the intersection 

 

Delay times at the intersections are calculated using Equation 3.6.1. 

 

dt atTT t t= −         3.6.1 

where,  

𝑇𝑇 is delay time at the intersection, 

 att is the arrival time at the intersection, and  

dtt  is the moment vehicle pass at point C.  

The travel time experienced by a vehicle in a given link (point A to point C, 

Figure 3.14) is composed of running time and delay time, as shown in Equation 

3.6.2. 

𝑇𝑇𝑖𝑡 = 𝑡𝑡𝑓𝑖 + 𝑡𝑡𝑑𝑖        3.6.2 

where, 

𝑇𝑇𝑖𝑡  is the travel time a vehicle experienced in the link "i" at a given time "t",  

 𝑡𝑡𝑓𝑖  is the vehicle running time that a vehicle experienced in link I, and 

𝑡𝑡𝑑𝑖 is the delay time a vehicle experienced at the intersection in the link i.  
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Furthermore, 𝑡𝑡𝑓𝑖  is the running time and it is determined as indicated in equation 

3.6.3. 

i
ft

i

L
tt

V
=         3.6.3 

where, 

𝑡𝑡𝑓 t is the link running time, 

,𝐿𝑖 is the link length, and  

𝑉𝑖 is link speed.  

In practice, the running time vehicles experience in the link consist of a 

degree of fluctuation, which is caused by driving behavior, speed limits, bus stops, 

pedestrian signs bumps, and roadside parking. However, delays due to signal control 

and initial queues constitute a large part of link travel time, which is the focus of this 

section. The delay time that a vehicle experiences at an intersection is the moment 

the vehicle enters at point B and the moment a vehicle leaves at point C (see Figure 

3.14). The factors that influence intersection delay time are traffic light control, 

presence of a queue at the intersection, random flow of traffic, and traffic police 

control. 

In reality, it is expected that the delay which vehicles experience at 

intersections should be less than or equal to the red phase time plus the green phase 

time, if the system is under saturation conditions (Chen et al., 2017). Some vehicles 

may pass without waiting, while others may wait for more than two cycles to cross 

point B to point C. Hence, the average delay that vehicles experience from B to C 

can be determined based on the delay time distribution (Olszewski, 1993; Chen et al., 

2017). Furthermore, many researchers argue that the primary cause of delay time at 
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intersections are traffic control, traffic overflow, and random traffic flow (Fu and 

Hellinga, 2000; Zheng et al., 2015; Chen et al., 2017). 

It is understood that predicting delay variation at intersections requires an 

accurate estimation of both the running time and the intersection delay variability. 

Delays at intersections are extremely uncertain, especially along urban arterials under 

signal control. The focus of this study was to determine delay variation at the 

intersections in the study area. Vehicle delay at a signalized intersection depends on 

the arrivals and departures, the length of the red and green phases, and the initial 

queue. The queue length is a step function that increases by one at the arrival of a 

vehicle and decreases by one at the departure of a vehicle, in one cycle. If the 

expected value is considered as being a queue length, then the queue length becomes 

a continuous function of time. The expectation value of the queue length can be 

derived from the probability function of queue length proposed by Viti et al., (2010). 

3.6.2.1 Intersection Delay Time Model  

The delay variation function was derived for two scenarios: off-peak hours and peak 

hours. For the off-peak scenario, it was assumed that at the beginning of the red 

phase, at time (t) = 0, no initial queue existed at the stop line of the intersection, and 

that the beginning of the red phase (𝑇𝑟) and the green phase (𝑇𝑔) was not fully 

saturated, on average. The queue length increased proportionally to the red time phase 

(𝑇𝑟) and decreased proportionally to the green time phase (𝑇𝑔). The average arrival 

rate is equal to 𝑞 and remains constant during the evaluation period. The delay as a 

function of time at the stop line of the intersection can be derived as proposed by 

Zheng and Van Zuylen (2010), and described by Equations 3.6.4a - 3.6.4b.  



116 
 

 

First step - no queue exists at the intersection 
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where,  

𝐷𝑡  is the delay time at the intersection,  

𝑇𝑟 is the red phase time,  

𝑆 is the saturation flow rate, 

𝑡 is the arrival, and 

𝑞 is the arrival flow rate,   

In the second step, a queue exists at the intersection. Let us assume that an 

initial overflow queue exists at the start of the red phase and that the green phase is 

still long enough to handle all traffic. Then, the delay time can be derived as shown 

in Equations 3.6.4c and 4.3.4d. 
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where, 

𝐷𝑡  is the delay time at the intersection,  

𝑇𝑟 is the red phase time,  

𝑆 is the saturation flow rate, 

𝑡 is the arrival, and   

𝑞 is the arrival flow rate,   

𝑛𝑜  is the initial queue at the intersection beginning of red phase time.  

3.6.2.2 Determine Delay Time Variation at the Intersection  

 

The maximum delay time is the total time a vehicle experienced at the intersection in 

each cycle, counted immediately after the effective green time started. It is equal to 

the red phase (Tr) plus the time necessary to release the initial queue, and the 

departure time of the vehicle itself. The delay time decreases linearly until the end of 

the saturated green time and the delay is zero, as indicated in Figure 3.12. 
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Figure 3.12: Changing Delay Time at Intersection 

 

The probability of the vehicle having a delay from 𝐷𝑡1 to 𝐷𝑡2 at the 

intersection is determined as shown in Equation 3.6.5. 

( ) ( )
2

1 2
1 1

t

t t
t

P D X D x x
=

  =        3.6.5 

where, 

Dt1 is delay time at t1 

Dt2 is delay time at t2, and  

x is the link distance from t1 to t2. 

3.6.2.3 Determine of Delay Time Variation  

Delays that individual vehicles experience at intersections are usually subjected to 

large variation due to the randomness of traffic arrivals, and interruption caused by 
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traffic signal controls and traffic police. However, the majority previous analyses has 

only focused on average delay estimation, which alone cannot provide an accurate 

representation of changes in actual traffic conditions, unlike delay time variability at 

intersections. Chen et al., (2013) and Olszewski (1993) suggested a new method for 

evaluating delay at intersections through the application of probability distribution 

times to determine delay distribution and confidence intervals. This technique 

evaluates intersection performance to be more meaningful. Furthermore, TRB (2000) 

suggests that the reputable model is the one that can capture the total amount of 

variation distribution to determine LOS. However, the implementation of current 

models is still limited for urban road networks, especially in developing countries. 

Most of the literatures have shown the evaluation of delay distribution at 

intersections based on traffic flow states (off-peak and peak) (Chen et al., 2013; 

Zheng and Van Zuylen, 2010; Fu and Hellinga, 2006; Olszewski, 1993). The 

evaluation of delay distribution at intersections on the five main corridors in Dar es 

Salaam city will inform planners of road bottlenecks in urban road network. Three 

scenarios were considered: the entire day delay distribution, peak hour delay 

distribution, and off-peak hour delay distribution.  

The analysis of delay variation at the intersections was performed using a 

total of 674 samples of data collected from 41 junctions on the five main corridors. 

Data was collected on weekdays (Monday- Friday), as indicated in Table 3.12. 
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Table 3.12: Surveyed Intersections in Five Main Corridors 

Corridor Name  

Survey 

Time (hrs) 

Number of 

Directions 

Number 

Intersections  

Samples 

collected  

Tegeta-Kariakoo  14 2 15 246 

Mbezi- Kariakoo 14 2 6 99 

Pugu- Kariakoo 14 2 7 115 

Mbagala- Kariakoo 14 2 6 99 

Kawe - Kariakoo  14 2 7 115 

Total Number     41 674 

 

The data collected from the field was organized into three scenarios: the 

entire delay (inbound and outbound), off-peak hour delay (inbound and outbound), 

and peak hour delay (inbound), as indicated in Figure 3.13.  

 

Figure 3.13: Delay Variation Distribution Analyses 

3.6.2.4 Determine Normal Delay Distribution 

Accurate estimation of vehicle delay is difficult because of the randomness of 

traffic flow and large number of factors affecting intersection capacity. Existing 

delay models simplify the real traffic conditions and provide only approximate point 

estimates of average delay, whereas its variability should also be of interest (Chen et 

al., 2013). A stochastic model was used to study the changing probability distribution 

of delay at intersection has shown positive improvement to most of road users, such 

as transport planners and operators (Chen et al., 2013; Fu and Hellinga, 2006; 

Olszewski, 1993). The model is based on sequential calculation of queue length 

probabilities with any type of arrival process. Delay probability distribution was 
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investigated for different degrees of saturation, arrival types and control conditions 

(Viti et al., 2010). The variance of delay increases rapidly with degree of saturation 

and is inversely proportional to the approach capacity (Chen et al., 2017). Other 

parameters such as cycle time and saturation flow do not have a significant effect on 

delay distribution(Chen et al., 2013; TRB, 2000).  Both the mean and variance of 

delay are sensitive to arrival process characteristics and increase with the variance of 

arrivals(Hellinga, 2006; Olszewski, 1993). However, this study uses normal 

distribution to predict delay distribution under heterogeneous traffic flow conditions. 

The delay variation distribution was determined based on a function of average delay 

time, STD, and Z-value, as indicated in Equation 3.6.5 

( ) ( ), ,D t f z =         3.6.5 

where, 

𝐷(𝑡) is the delay distribution at time t, 

𝑈 is the average delay at time t, 

𝝈 𝑖s the standard deviation, and  

𝑍  is the score that explains the value of an observation or data point is above or 

below the mean value of what is being observed or measured.  

The data was edited and checked for their reliability, and outliers and unusual 

travel times from the corridors were removed and adjusted. The XLSTAT software 

was used to simulate delay variation distribution in all 41 intersections. XLSTAT is 

the statistical analysis add-in that offers a wide variety of functions to enhance 

analytical capabilities. It is compatible with all Excel versions, such as Microsoft 
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version 2003 to version 2016 (2011 and 2016 for Mac). Delay data from the 41 

intersections was inserted as input data in the XLSTAT modeling data tools, with a 

distribution fitting dialog box.  

The XLSTAT software was used to analyze delay variation under two 

scenarios: inbound direction and outbound direction. The software has the ability of 

analyzing delay variation in different time intervals at the intersections, as 

demonstrated in Figure 3.14. 

 

Figure 3.14: XLSTAT software delay variation through distribution curve 

 

 

The inbound and outbound delay variations were further classified into three 

scenarios: the entire delay, off-peak hours, and peak hours. This three-scenario 

analysis was conducted to gain more insight into delay variation at the intersections. 

This approach also considered the delay variation caused by traffic control and traffic 

police control at the intersections. The traffic flow at the intersections contained 

different sizes of vehicles, as well as different speeds, which make the prediction of 

delay variation at the intersections to be too complex. 
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Vehicle discharge during the green interval primarily depends on the queue 

status at the intersection. Whenever there was no queue at the intersections, vehicles 

were discharged immediately without waiting at the intersection and the delay 

became zero. Otherwise, the vehicle would wait until the discharge of the queue 

ahead of it. Delay variation was estimated each of the 41 intersections on the five 

main corridors in Dar es Salaam city for the three scenarios, entire delay, off-peak, 

and peak periods, while also taking into account signal and police control at the 

intersections.  
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CHAPTER 4 – RESEARCH FINDINGS AND DISCUSSION 

4.1 Introduction  

This Chapter discusses the output of developed Dynamic Travel Time Prediction 

model by comparing and combining existing models, such as the Multiple Linear 

regression model, Artificial Neural Network model, and the Kalman Filter algorithm, 

to obtain a suitable dynamic model. However, travelers and transport operators may 

not only be interested in route travel time, but also in route travel time reliability, 

which is also be presented in this Chapter. Furthermore, transport engineers and 

planners are interested in knowing the behaviour of travel time variation at different 

parts of the urban road network, as well as the locations with considerable variations. 

To answer this, the study evaluates delay variation distribution on the five main 

corridors in Dar es Salaam city in Tanzania. 

4.2 Development of the Dynamic Travel Time Model  

 

The dynamic travel time model was developed using data collected in Dar es Salaam 

city, using public buses operating on the five study corridors: Tegeta-Kariakoo, 

Kawe-Kariakoo, Mbezi Luisi- Kariakoo, Pugu-Kariakoo, and Mbagala-Kariakoo. 

The data collected on these corridors include the link travel time, waiting time at the 

intersections, link length, traffic volume, and traffic flow states (peak hours and off-

peak hours). For analyses, the dependent and independent variables were established 

as indicated in Table 4.1. 
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Table 4.1: Travel Time Independent and Dependent Variables 

Independent Variables Average (Inb) Average (outb) Units 

Link Length 6.0 6.0 Km 

Waiting Time at intersections 6.0 5.5 Minutes 

Waiting Time at bus stops 7.0 8.0 Minutes 

Traffic states (Peak and off-peak) 

 

 

0.5 0.5 Hours 

Traffic Volume 1241 1173 No. of Veh/hr 

Dependent Variables Average (Inb) Average (outb) Units 

Link Travel time 25 21 Minutes 

 

 

4.2.1 Similarities of Traffic Flow per Week  

 

The data were analyzed and the reliability computed. Results reveal that the travel 

time mean and STD have similar values, as indicated in Table 4.2. 

 

Table 4.2: Weekly Travel Time Descriptive Statistics 

Average (Min) STD (Min.) 

Name of Days  Inbound Outbound Inbound Outbound 

Monday  22.3 20.9 8.8 8.4 

Tuesday  21.6 21.0 9.0 8.2 

Wednesday  20.8 21.9 9.1 8.5 

Thursday  22.0 21.9 8.9 8.6 

Friday  23.1 22.2 7.8 8.5 

 

Figures 4.1 and 4.2 present travel time in each link for three weekdays (Tuesday, 

Wednesday, and Thursday) for the inbound and outbound directions, respectively. 

Travel time prediction has an association with the level of uncertainty, which 

depends upon the underlying variability of the data, as well as the sample. Time 
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variations for each link are a significant factor, since it shows how travel time varies 

during the weekdays. Travel time variations were observed between different lines, 

corresponding to different weekdays. As shown in Figures 4.1 and 4.2, travel time 

variation is relatively small during the weekdays. In this case, the data is considered 

as a precise sample size for model development. 

 

 

Figure 4.1:  Travel Time Variation Inbound Directions 

 

 
Figure 4.2: Travel Time Variation Outbound Directions 

 

4.2.2. Model Performance and Evolution  

4.2.2.1 Comparison of MLR and ANN Models  
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The output from the MLR and ANN may not be applied directly to predict the next 

link travel time because the MLR and ANN models were built using historical data. 

The performance of the models were evaluated  in terms of accurate urban travel 

time prediction, based on R squared, the MAPE, and RMSE, as indicated in Table 

4.3.  

Table 4.3: Comparison between MLR and ANN Models 
 

Traffic  States  Multiple Linear Regression Model  Artificial Neural 

Network Model 

Variables R2 MAPE RMSE R2 MAPE RMSE 

Inbound Direction 6 0.88 39.69 0.13 0.96 18.54 0.07 

Outbound 

Direction 

6 39.6

9 

75.11 0.18 0.82 25.69 0.08 

Morning Peak 

Hours (Inbound) 

6 0.90 32.86 0.13 0.97 18.68 0.07 

Evening Peak 

hours (Outbound) 

6 0.84 50.89 0.20 0.98 15.50 0.07 

Morning Off-peak 

(Outbound) 

6 0.85 75.10 0.18 0.95 30.99 0.09 

Evening Off-peak 

(Inbound) 

6 0.80 44.03 0.13 0.96 21.23 0.08 

 

From Table 4.3, it can be observed that the MLR model has higher MAPE and 

RMSE values compared to the ANN model. This indicates that it has poor 

performance. The ANN model has high R square values compared to the MLR 

model, which reflects excellent performance, compared to the MLR model. 

Therefore, the ANN model was considered as a suitable model to be integrated with 

Kalman Filter algorithm to obtained future link travel time.  



128 
 

 

4.2.2.2 Comparison of ANN and ANN-Kalman Filter (ANN-KF) Models  

Model correlation coefficient (r)  

After developing the ANN-KF model, it was necessary to evaluate its performance in 

terms of prediction accuracy. The prediction accuracy was assessed and compared 

with the ANN model employing R-square From Figure 4.3(a), (b) and Figure 4.3(c), 

(d), it is shown that the R-square of the ANN model ranges from 82 to 84 percent, 

which means that over 82 percent of the dependent variable (observed urban travel 

time) was explained by the independent variable, which is the estimated urban travel 

time by ANN. 

Furthermore, about 99 percent of the predicted travel time by ANN-KF Model 

explained travel time from the ANN Model, which implies that 99 percent of the 

expected travel time by the ANN-KF Model was well fitted in the ANN Model 

 

Figure 4.3 (a), (b):  ANN Inbound and Kalman Filter Inbound 
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Figure 4.3 (c), (d):   ANN Outbound and Kalman Filter Outbound 

4.2.2.3 Model Validation   

Model validation is the process of determining whether the model accurately 

represents the behavior of the system (Zheng, 2011). Model validity should be 

evaluated by its operation, thus, by determining if the model output (link travel time 

prediction) against the actual data (link travel time data collected from the field). It is 

the process of comparing model prediction to an independent actual data from the 

field (Bai et al., 2015).  

There are many statistic methods used to validate models. But, the most common 

methods used to validate models are graphical and numerical residual analysis 

methods (Bai et al., 2015; Zheng, 2011).  The graphical residual analysis methods 

use caves, lines or bars to show the fitness or miss fit of graphs against the actual and 

simulated data (Fan and Gurmu, 2015). Therefore, the study used both graph and 

numerical methods to validate ANN-KF model. 
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The graphical method 

Figure 4.4 (a) and (b) show relationship between the predicted time from ANN-KF 

model and actual time from field, whereby dotted red lines, blue solid lines predict 

travel time, and actual travel time respectively. The results show small variations 

between predicted time and observed time, meaning that results from ANN-KF 

model represent reasonably the actual time.   

 

Figure 4.4 (a): Comparison observed and predicted outbound travel time 
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Figure 4.4 (b): Comparison observed and predicted outbound travel time 

 

Numerical Method  

The study used MAPE and RMSE to evaluate the relationship between actual and 

predicted time using Equations 4.2.1 and 4.2.2. 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑇𝑇𝑜𝑏−𝑇𝑇𝑝𝑟𝑒𝑑

𝑇𝑇𝑜𝑏
|𝑛

𝑖=1        4.2.1 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑇𝑇𝑜𝑏 − 𝑇𝑇𝑃𝑟𝑒𝑑)𝑛

𝑖=1       4.2.2 

where 

 𝑇𝑇𝑜𝑏 is the predicted travel time from ANN, 

 𝑇𝑇𝑝𝑟𝑒𝑑 is the predicted bus travel time from ANN-KF model, and 

 𝑛 is the number of bus trips observed in the main corridors. 
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Table 4.4 (b) : Comparison of Prediction Errors for two Models 

 ANN-KF Model 

MAPE% RMSE 

Inbound Direction 8.72 0.02 

Outbound Direction 10.58 0.20 

Morning Peak Hours (Inbound ) 6.11 0.21 

Evening Peak hours (Outbound) 5.24 0.22 

Morning Off-peak(Outbound) 8.63 0.23 

Evening Off-peak (Inbound) 7.14 0.02 

 

The results shown on Table 4.4, the Mean Parentage Error(MPE) of ANN-KF  model 

range from 15.50 to 30.99, while Root Mean Square Error (RMSE) range from 0.02 

to 0.22 in both directions.   

It can be concluded that, integration of the Artificial Neural Network model and 

Kalman Filter algorithm promise to be a reasonable model for predicting dynamic 

travel time in Dar es Salaam city. 

4.3 Route Travel Time Reliability 

This section presents the analysis of travel time reliability in Dar es Salaam city on 

bus operation on the five main corridors, using link length, waiting time at the 

intersections, and waiting at the bus stops. The study applied standard deviation, 

coefficient of variation, buffer time, and planning time to compute travel time 

reliability using the data collected on the five main bus routes in Dar es Salaam.  

The quality of urban transport services depends mainly on travel time 

reliability. Travel time reliability is affected by a number of factors, such as link 

length, delay time at the intersections, and waiting time at the bus stops. This study 

used travel time reliability as the dependent variable, and link length, delay time at 

the intersections, and waiting time at the intersections, as the independent variables, 

as indicated in Table 4.5. The XLSTAT software was applied to analyze route travel 
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time reliability based on standard deviation, 95 percentile travel time, buffer time, 

and planning time. 

Table 4. 5: Travel Time Independent and Dependent Variables 

Independent Variables  Units  Dependent Variables 

  

Units  

Link travel time   Minutes  Standard deviation  Minutes 

Waiting time at intersections Minutes   95th percentile Minutes 

Waiting time at bus stops Minutes Coefficient of variation 

(CV) 

Ration 

  Buffer time  Minutes 

  Planning time  Minutes 

Minutes  
 

4.3.1 Day-to-day Travel Time Variability  

Table 4.6 presents the average delay time, standard deviation at 95 percentile time, 

and coefficient of variation of all surveyed routes. The mean travel time ranged 

between 33.87 to 90.30 minutes for the inbound direction, and between 36.98 to 

87.36 minutes for the outbound direction. The standard deviation ranged between 

5.24 to 15.02 minutes for the inbound direction, and between 7.89 to 23.22 minutes 

for the outbound direction. The coefficient of variation (CV) ranged between 11 to 

21 percent for the inbound direction, and between 13 to 27 percent for the outbound 

direction. Higher travel time variations were observed during off-peak hours, mainly 

for outbound direction, compared to the inbound directions, implying that the travel 

time for the off-peak period for the outbound directions are less reliable than the 

inbound directions. This indicates that travel time is unreliable during the off-peak 

hours, especially for the outbound direction. This unreliability results in a low quality 

of transport services. 

Table 4.6: Average Travel Time and Standard Deviation at Route Levels 

Corridor Parameters  Inbound Direction  Outbound-Direction   

 Mbagala-

Kariakoo 

Mean (min) 33.87 36.98 

STD (Min) 5.24 7.89 

95th percentile (Min) 35.20 39.42 
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Corridor Parameters  Inbound Direction  Outbound-Direction   

CV 0.15 0.21 

Pugu -

Kariakoo 

Mean (min) 80.15 72.43 

STD (Min) 10.95 9.38 

95th percentile (Min) 97.20 85.66 

CV 0.14 0.13 

Mbezi-

Kariakoo 

Mean (min) 79.05 81.03 

STD (Min) 8.44 11.53 

95th percentile (Min) 92.90 104.44 

CV 0.11 0.14 

Kawe -

Kariakoo 

Mean (min) 64.05 67.32 

STD (Min) 13.25 9.69 

95th percentile (Min) 90.56 82.24 

CV 0.21 0.14 

Tegeta -

Kariakoo 

Mean (min) 90.30 87.36 

STD (Min) 15.02 23.22 

95th percentile (Min) 118.87 130.45 

CV 0.17 0.27 

 

4.3.2 In-Vehicle Buffer Time  

Figure 4.5 presents the in-vehicle Buffer time of all five surveyed routes, analyzed at 

95 percent confidence. For the inbound (Inb) and outbound (Outb), the in-vehicle 

buffer time varies between 11.12 to 28.56 minutes and 13.23 to 43.09 minutes, 

respectively. During the inbound off-peak (Inb-off) and outbound off-peak (Out-off) 

time, the buffer time varies between 9.78 to 31.06 minutes and 16.49 to 23.11 

minutes, respectively. Likewise, during the inbound peak hours (Inb-peak) and the 

outbound peak hours (Out-peak), the in-vehicle buffer time ranges from 5.89 to 

53.84 minutes and 8.06 to 38.29 minutes, respectively. Higher buffer times were 

observed on the Tegeta-Kariakoo route for the inbound peak hours and outbound 

directions, particularly in-vehicle time, while a low value of buffer time was noted on 

the Mbagala-Kariakoo during inbound peak hours. It was found that the travel time 

reliability during peak hours is greatly affected by the route distance. For example, 
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travelers that use the Mbagala-Kariakoo route spend 33.87 and 36.98 minutes, on 

average, for the inbound and outbound directions. However, due to the travel time 

variation, they must reserve 11.2 and 18.87 minutes as extra time to overcome travel 

time variability. 

 

Figure 4.5: In-vehicle Buffer Time in Dar es Salaam City 

4.3.3 In-Vehicle Planning Time  

Figure 5.6 presents the in-vehicle planning time of all five surveyed routes. Higher 

planning times were observed for the Mbagala-Kariakoo route during outbound off-

peak, Pugu-Kariakoo during inbound peak hours, Mbezi-Kariakoo during outbound 

peak hours, Kawe-Kariakoo during inbound off-peak, and Tegeta-Kariakoo during 

inbound peak hours. Also, the minimum planning time was observed for the 

Mbagala-Kariakoo route during outbound peak hours, Pugu-Kariakoo during 

outbound off-peak, Mbezi-Kariakoo during inbound off-peak, Kawe-Kariakoo 

during intbound off-peak hours, and Tegeta-Kariakoo during outbound off-peak 
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hours. Dar es Salaam commuters that want to travel from Tegeta to Kariakoo should 

spend 180.80 and 179.85 minutes for inbound and outbound, 195.61 and 137.33 

minutes for off-peak inbound and outbound, and 194.56 and 190.53 minutes for peak 

hour inbound and outbound, respectively, to be able to reach their destination on 

time. The reason for the low value of planning time observed in the inbound 

direction, compared to the outbound direction, is that, most of the bus drivers drive at 

low speeds and spend a long time at the bus stops waiting for passengers. 

 

Figure 4.6: In-Vehicle Planning Time in Dar Es Salaam City 

 

4.3.4 Route Buffer Time Index and Planning Time Index  

Figure 4.7 presents the In-vehicle Buffer Time Index (BTI) and the Planning Time 

Index (PTI) of the five surveyed routes. The BTI varies from 0.30 to 6.40, and the 

PTI varies from 0.14 to 0.80. Higher and lower PTI values were obtained in the 

Pugu-Kariakoo and Tegeta-Kariakoo. However, high and low BTI values were 

observed in Pugu-Kariakoo and Mbezi-Kariakoo. Furthermore, results showed that 

the Tegeta-Kariakoo route had a low PTI value, particularly the in-vehicle time 

compared to other routes. In contrast, Kawe-Kariakoo had a high value of PTI for the 
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in-vehicle time compared to other routes. This implies that the Kawe-Kariakoo route 

was more congested than other routes because of the use of more private cars than 

public vehicles. 

 
Figure 4.7: Buffer Time and Planning Time Index 

4.3.5 Waiting Time Reliability at Bus Stops and Intersections  

Figure 4.8 presents the mean time, standard deviation time, and buffer time at the bus 

stops and intersections. During the inbound peak hours (Inb-Peak) and outbound 

peak hours, the waiting time at the bus stops deviates from the mean waiting time by 

1.62 to 5.02 minutes and 1.29 to 3.26 minutes, respectively. For the inbound off-peak 

(Inb-off) and outbound off-peak, waiting time at the intersections deviated from the 

mean waiting time by 1.19 to 4.16 and 1.97 to 3.90 minutes, respectively. Also, for 

travelers to cross through the intersections at 95% confidence, they should reserve 

2.40 to 10.11 minutes during inbound off-peak and 3.40 to 6.65 minutes during 

outbound off-peak. However, during inbound and outbound peak hours, travelers 

should reserve 3.66 to 10.43 minutes and 2.45 to 5.34 minutes, respectively. 
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Figure 4.8:  Buffer time at the Bus Stops and Intersections 

 

4.3.6 Bus Stops based on Standard Deviations and Buffer Time  

During the inbound off-peak (Inb-off) and outbound off-peak, the waiting time at the 

bus stops deviated from the mean waiting time by 1.27 to 5.86 minutes and 1.33 to 

8.01 minutes, respectively. During peak hours, the waiting time varied from the 

mean waiting time by 1.09 to 9.06 minutes and 0.97 to 2.41 minutes for the inbound 

and outbound directions, respectively. In addition, the additional time to the mean 

waiting time during off-peak hours ranged from 2.18 to 13.93 minutes and 2.53 to 

17.87 minutes for the inbound and the outbound directions, respectively.  

A high standard deviation value was observed along the Kawe-Kariakoo 

route during morning peak hours, and a low standard deviation value was found 

along the Tegeta-Kariakoo route during morning peak hours at the bus stops and 

intersections. A high value of buffer time was observed along the Pugu-Kariakoo 
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route, followed by the Mbezi-Kariakoo route, perhaps due to construction activities 

along in these routes. However, a low buffer time was observed along Tegeta-

Kariakoo route compared to the other routes, though it is the longest route in the city. 

This finding may the result of a stable passenger flow at the bus stops. These results 

reveal that the waiting time at the bus stops along the Tegeta-Kariakoo route is more 

reliable than on the other routes. 

4.4 Delay Variation Distribution at the Intersections  

It has been noted that travel times in urban road networks vary greatly within a short 

period, as well as from period to period in a single day. The major cause of this 

variability is the delay that drivers experience at the intersections, which 

differentiates developed countries from developing countries. Traffic flow in 

developing countries is a mixture of different modes of transport, which in turn, 

makes delay variation more complex. Factors, such as the speed of the different 

modes, the frequent interruptions of the traffic lights, and traffic police control at the 

intersections, contribute to delay variations. This section explores delay variations at 

the 41 study intersections on the five main corridors in Dar es Salaam city, as 

indicated in Table 4.7. 

Table 4.7: Number of Intersections in Five Main Corridors 

Corridors  Intersections  Corridors  Intersections  

Kawe-Kariakoo 

Morocco 

Pugu-Kariakoo 

Karume 

Ada Estates Buguruni 

Kinondoni A Tazara 

Studio Vingunguti 

Makanya Junct. Jet -Kipawa 

Magomeni Airport 

Karume Kinyerezi 

Mabagala-

Kariakoo 

Gerazani 
Tegeta-Kariakoo 

Msimbazi 

Kamata Fire 

Bandari Salender Bridge 
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Corridors  Intersections  Corridors  Intersections  

Uokovu Kinondoni Junc 

Uhasibu Oysterbay 

Sabasaba Namanga 

Mbezi-kariakoo 

Karume Morocco 

Buguruni Sayanzi 

Tabata Dampo Mwenge 

External Kawe 

Ubungo Tangi Bovu 

Kibo Masana 

Bucha Africana 

 Mbuyuni 

 Wazo hill 

 

The proposed model estimated delay variations at the intersections during the peak 

and off-peak hours. The analysis was done at the moment of vehicle arrival and the 

moment of vehicle departure at the intersections. The delay time was considered as 

the independent variable and delay variation distribution as the dependent variable 

 

Table 4.8:  Delay Variation in Five Main Corridors 

    

Inbound Intersection 

Delay Time  

Outbound Intersection 

Delay Time 

Corridors  Scenarios Mean (Min) STD(Min) Mean (Min) STD(Min) 

Mbagala- 

Kariakoo  

Entire delay   8.69 3.99 7.30 2.95 

Off-peak hours  4.79 4.11 7.61 2.74 

Peak-hours  8.40 4.01 6.75 3.26 

Pugu-

Kariakoo  

Entire delay   4.66 3.48 3.24 1.99 

Off-peak hours  4.13 2.81 3.54 2.20 

Peak-hours  5.51 4.25 2.70 1.41 

Tegeta-

Kariakoo 

Entire delay 4.25 1.91 5.30 2.23 

Off-peak hours  4.27 2.06 5.26 2.43 

Peak-hours  4.22 1.61 5.38 1.83 

Mbezi-

Kariakoo 

Entire delay   4.43 1.96 4.28 1.79 

Off-peak hours  4.00 1.19 4.57 1.97 

Peak-hours  5.14 2.67 3.76 1.29 

Kawe-

Kariakoo 

Entire delay   4.84 4.23 4.08 3.61 

Off-peak hours  4.56 3.68 4.41 3.90 

Peak-hours  5.30 5.02 3.47 2.97 
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From Table 4.8, the average delay time ranged from 4.00 to 8.69 minutes for 

the inbound direction, while for outbound direction, the average time ranged from 

2.7 to 7.61 minutes. The delay variation an individual vehicle experienced at the 

intersections ranged from 1.19 to 5.02 minutes (about 4 minutes), and from 1.29 to 

3.9 minutes (about 3 minutes) for the inbound and outbound directions, respectively. 

This implies that there is a greater chance of a vehicle spending less than or equal to 

4 minutes and 3 minutes in waiting time (i.e., delay < 4 minutes and delay < 3) at 

every intersection in the city for inbound and outbound directions, respectively.  

The average delay time of an individual vehicle experienced for the inbound 

direction ranged from 4.0 to 4.8 minutes during off-peak hours, and from to 4.2 to 

8.4 minutes during peak hours. Delay variation for both off-peak and peak hours was 

about 3 minutes. In addition, results reveal that there is no significant difference 

between average delay time and variation delay for the inbound direction, for both 

off-peak and peak hours. 

The average delay outbound vehicles spend at the intersections ranged from 

3.4 to 7.6 minutes and 2.7 to 6.6 minutes during off-peak and peak hours, 

respectively. On the other hand, delay variation in the outbound directions was about 

2 minutes, for both off-peak and peak hours. Also, it has been noted that there is a 

significant variation during both the off-peak and peak hours for the outbound 

direction. However, there is a significant variation in hours during the inbound off-

peak and peak periods and the outbound off-peak and peak periods.  

As illustrated in Figure 4.9(a), the probability of inbound vehicles 

experiencing more than 2 minutes and less than 9 minutes in delay time is 

approximately 62%. This means that about 62% of inbound vehicles (mostly small 
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and medium size) are likely to spend more than 2 minutes and less than 9 minutes to 

cross an intersection in the city. 
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Figure 4.9: Delay distribution in inbound and outbound directions 
 

 

Delay (Min) is the delay time in minutes, and   

Pd(.) is  delay probability Function. 
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Nearly 27 % of inbound vehicles, mostly motorcycles and non-motorized 

transport, spend less than 2 minutes to cross an intersection in the city, while 11 % of 

vehicles, heavy and commercial vehicle types, spend more than 9 minutes (see 

Figure 4.9(a).  

From Figure 4.9(b), approximately 67% of outbound vehicles, mostly small 

and medium size, spend more than 2 minutes and less than 9 minutes (i.e., 2 minutes 

< delay < 9 minutes) to cross an intersection in the city, while 25 % of outbound 

vehicles, mostly motorcycles and non-motorized transport, spend less than 2 minutes 

(i.e., delay < 2 minutes). Only 8 % of outbound vehicles spend more than 7 minutes 

(i.e., delay > 9 minutes) to cross an intersections in the city, and these vehicle types 

consist of heavy and commercial vehicles.  

During the off-peak hours, about 71% of inbound vehicles experienced a 

delay greater than 2 minutes and less than 9 minutes (i.e., 2 minutes < delay < 9 

minutes), as shown in Figure 4.10(a). This implies that most of the vehicles arrived at 

the intersections already delayed by long queues and frequent traffic police control. 

Furthermore, there is a 13 % chance for heavy and commercial vehicles to 

experience a delay longer than 9 minutes (i.e., delay > 9 minutes). This result may be 

due to traffic congestion at the intersections. However, there is a 16 % chance that 

vehicles will (motorcycle) spend less than 2 minutes in delay during the off-peak 

hours. This result indicates that the vehicles crossed the intersections during the 

green signal phase, without a long wait.  

During peak hours, about 72% of vehicles experienced delay for longer than 

2 minutes and less than 9 minutes (2 minutes< delay < 9 minutes), while 9% of 

vehicles ( heavy vehicles and commercial) spent more than 9 minutes, and 19% 
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vehicles (motorcycles) experienced less than 2 minutes to cross an intersection, as 

shown in Figure 4.10(b). Interestingly, during peak hours, about 19% of vehicles 

(mostly motorcycles and non-motorized transport) spent less than 2 minutes, 

compared to 16% of similar vehicles during off-peak hours. This result is likely due 

to traffic police giving inbound traffic priority during peak hours compared to 

inbound off-peak hours, when traffic control primarily depends on the traffic signals. 

Also, it was noted that, motorcycles spend less time to cross at the intersection 

compare to other modes of transport in Dar es Salaam city. 
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Figure 4.10: Inbound off-peak and Peak Hours Delay Distribution 

 

In Figure 4.11(a), about 75% of vehicles experienced a delay of more than 2 

minutes and less than 9 minutes (2 minutes < delay< 9 minutes) at the intersections. 
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In comparison, 19% of vehicles spent less than 2 minutes (delay < 2 minutes), and 

6% of vehicles (heavy commercial vehicles) spent more than 9 minutes (delay > 9 

minutes) at the intersections. 

 

Figure 4.11:  Outbound off-peak and Peak Hours Delay Distribution 
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For peak hours, 80% of vehicles experienced delay greater than 2 minutes 

and less than 9 minutes (2 minutes < delay < 9 minutes), while 18% of vehicles 

(motorcycles) spent less than 2 minutes (delay < 2 minutes), and 2% of the vehicles 

spent greater than 9 minutes (delay > 9 minutes) at the intersections, as indicated in 

Figure 4.11(b).  

Overall, during the outbound peak hours, about 80% of vehicles spend more 

than 2 minutes and less than 9 minutes to cross each intersection. Table 4.9 

summarizes the results for peak and off-peak hours for outbound and inbound 

directions. 

Table 4.9: Delay Time Distribution at the Intersections 
 

Direction  Vehicles (%) Delay Distribution 

Inbound 

  

52 2 minutes < Delay 9 minute 

32 Delay < 2 minutes 

16 Delay > 9 minutes 

Outbound 

  

70 2 minutes < Delay 9 minute 

22 Delay < 2 minutes 

8 Delay > 9 minutes 

Inbound-Off-Peak- 

  

71 2 minutes < Delay 9 minute 

16 Delay < 2 minutes 

13 Delay > 9 minutes 

Inbound –Peak hours 

  

72 2 minutes < Delay 9 minute 

19 Delay < 2 minutes 

9 Delay > 9 minutes 

Outbound- Off-Peak 

  

75 2 minutes < Delay 9 minute 

19 Delay < 2 minutes 

6 Delay >9 minutes 

Outbound Peak hours 

  

80 2 minutes < Delay 9 minute 

18 Delay < 2 minutes 

2 Delay > 9 minutes 
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Comparison Delay distribution at intersection  

Delay time range from 2 to 9 minutes, mostly are passenger vehicles such min buses, 

Pick-up and saloons. Delay time less than 2 minutes these are motorcycles and Bajaj, 

while delay time greater than 9 minutes these are heavy trucks.  

 

The results reveal that about 75% of cars spend 2 to 9 minutes to cross at the 

intersections traveling in the outbound directions, compared to 65% of cars traveling 

in the inbound directions. This suggests that during outbound peak hours, people 

essentially evacuate the city center within the same time period, which results in an 

influx of traffic flow along the five main corridors in the city. 
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CHAPTER 5 – CONCLUSION AND RECOMMENDATIONS 

5.1 Introduction  

 

This chapter presents conclusions and recommendations regarding the three specific 

objectives outlined and discussed in Chapter 1. In this study, a dynamic model for 

urban travel time prediction was modeled by applying Artificial Neural Network in 

collaboration with the dynamic Kalman Filter algorithm, and based on heterogeneous 

traffic flow conditions. The model was calibrated and validated using field data 

(primary and secondary data). Furthermore, urban travel time reliability was 

analyzed, as well as the delay time variation at the intersections under heterogeneous 

traffic flow conditions. In this chapter, conclusions, based on the research performed 

for this thesis, are presented in Section 5.2. The applicability of the results for 

practitioners, as well as implications for policy makers, are indicated in Sections 5.3 

and 5.4, respectively. Finally, Section 5.5 provides recommendations for future 

research.  

5.2 Conclusion  

Travel time estimation and prediction have been investigated by many researchers, as 

discussed in the literature review in Chapter 2. This thesis presents a different way of 

determining urban dynamic travel times, route travel time reliability, and delay time 

variation at intersections with different urban traffic flow conditions. The main 

contributions of this thesis are the development of a dynamic travel time model, 

calibration and validation of the model, and determination of reliability and delay 

variations at intersections under heterogeneous traffic flow conditions.  



151 
 

 

5.2.1 Literature Review  

In Chapter 2, the current state of practice in modeling urban dynamic travel times 

was presented. Three aspects of this study were discussed: urban travel time 

prediction, route travel time reliability, and delay time variability. Several existing 

approaches, including both model-based and data-driven methods, were evaluated in 

terms of their strengths and weaknesses in estimating or predicting urban travel time. 

The literature review revealed that established urban travel time prediction models 

have poor transferability and cannot be applied to evaluate urban travel time under 

heterogeneous traffic flow conditions. Furthermore, there are few urban travel time 

models that take into account delay time at intersections and waiting time at bus 

stops under heterogeneous traffic flow conditions. Urban traffic is a mixture of 

motorized and non-motorized vehicles, which can shift laterally from one lane to 

another, thus causing physical variations and travel time variation in the urban road 

networks (Preethi et al., 2016). Moreover, the lack of lane discipline at intersections 

causes notable lateral movement, and vehicles tend to use lateral gaps to move to the 

front of the queue.  

Route travel time reliability has been widely investigated. Different 

approaches have been proposed to describe urban travel time reliability given in a 

specific traffic condition, such as statistical distributions. However, the main 

drawback of these techniques is that they are based on homogeneous traffic flow 

conditions. Therefore, applying these techniques under heterogeneous traffic 

conditions may not represent real world conditions (Torrisi et al., 2017). 
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Delay time at intersections contributes nearly 50% to urban travel time 

(Zheng and Van Zuylen, 2011). Knowing the delay time vehicles experience at 

intersections is important for assessing the level of service of an urban road network. 

The accurate prediction of delay time has a significant influence on the final 

estimation or prediction of travel times. However, traffic flow in most cities in 

developing countries is chaotic, due to the mixed traffic and vehicles sharing the 

same lane. Moreover, the lack of lane discipline at the intersections causes notable 

lateral movement, and vehicles tend to use lateral gaps to move to the front of the 

queue. Under these conditions, the prediction of intersection delay time is very 

difficult. In addition, estimating the delay variation distribution using available 

models, which were developed under homogeneous traffic conditions, will not 

provide realistic results if directly applied to heterogeneous traffic conditions. 

5.2.2 Dynamic Urban Travel Time Prediction Model  

Chapter 3 discussed the development of the urban travel time prediction model for 

the five main corridors in the Dar Es Salaam city by applying Artificial Neural 

Network (ANN) in collaboration with the dynamic Kalman Filter (KF) algorithm. 

Multiple linear Regression (MLR) and ANN models were developed using waiting 

time at intersections, bus waiting time, number of bus stops, link distance, peak and 

off-peak hours, traffic volume, and travel time as input variables (i.e., input data). 

The models were compared in terms of their performance using R-squared, Mean 

Absolute Percentage Error (MAPE), and Root Mean Square Error (RMSE), and the 

ANN model outperformed the MLR model. The ANN model was integrated with the 

KF dynamic algorithm to produce an ANN-KF dynamic model, and the ANN-KF 

model outperformed the ANN model. 
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5.2.2.1 Model Validation  

The travel time from the ANN-KF model was compared to the data observed in the 

field. Validation of the ANN-KF model was performed based on the RMSE and 

MAPE to measure the accuracy of the travel time model. Findings indicate that the 

ANN-KF model promised to be a reasonable model for predicting the dynamic travel 

time on the five main corridors in Dar Es Salaam city.  

5.2.2.2 Model Performance  

The prediction accuracy was assessed and compared with the ANN model, 

employing R-squared. The ANN model R-squared ranged from 82 to 84 percent, 

which means that over 82 percent of the dependent variable (observed urban travel 

time) was explained by the independent variable, which is estimated urban travel 

time by the ANN. About 99 percent of the predicted travel time from the ANN-KF 

model explained travel time from the ANN model, which implies that 99 percent of 

the expected travel time by the ANN-KF model was well fitted in the ANN model.  

5.2.3 Travel Time Reliability  

The second objective of this research intended to analyze travel time reliability based 

on urban bus operational characteristics in heterogeneous traffic conditions. This 

objective evaluated travel time reliabilities in terms of travel time in the route links, 

waiting times at the bus stops, and delay time at the intersections. Four techniques were 

applied, including buffer time, standard deviation, coefficient of variation, and planning 

time. Data were obtained through ground observations and recordings of waiting times at 

the intersections and bus stops. Link travel time was collected using public transport, 

which operates on the five corridors in the Dar Es Salaam city. The overall results 
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indicate low service reliability in the outbound directions compared to the inbound 

directions.  

5.2.4 Delay Variation at the Intersections  

The third objective of this research intended to determine the delay time variation at 

the intersections under heterogeneous traffic flow conditions. The study evaluated 

the delay time distribution under three scenarios of traffic flow conditions: the entire 

delay (inbound and outbound), off-peak hours (inbound and outbound), and peak 

hours (inbound and outbound). Results indicate that during the outbound peak hours, 

about 80% of vehicles spend more than 2 minutes and less than 9 minutes to cross 

each intersection, followed by outbound off-peak, inbound peak, and lastly, inbound 

off-peak. Most of the vehicles spend more delay time (ranging from 2 to 9 minutes) 

in the outbound directions than the inbound directions because people almost 

evacuate the city center at nearly the same time, which results in an influx of traffic 

onto the five main corridors of the city. It was observed that nearly 62 % of vehicles, 

mostly small and medium size, are likely to experience more than 2 to 9 minutes of 

delay at an intersection. Further, 27 % of vehicles (motorcycles and non-motorized 

vehicles) are likely to spend less than 2 minutes, while 11 % of vehicles (heavy and 

commercial) spend more than 9 minutes to cross at the intersections.  

5.3. Practical Usability of the Results  

The results presented in this thesis provide several implications for practical 

applications. The travel time prediction models developed in this thesis can be used 

for travel time assessment. The present navigation systems provide mean travel times 

for urban routes based on average traffic conditions or only a few probes. The model 
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proposed in this thesis could give the prediction of the whole range of urban travel 

times and inform transport planners and road users to promote a better use of urban 

road network and address urban transport challenges.  

Travel time prediction on urban roads is a difficult subject. The proposed 

models can be used for urban link or trip travel time predictions. Chapter 3 discussed 

the possibility of applying the model for prediction purposes. The full range of urban 

route travel times could be predicted for a short time period (e.g., 15 minutes, 30 

minutes), though the validation of the prediction procedure using field data is limited 

by the fact of insufficient field road sensors, vehicles with installed GPS data, 

reliable probe vehicles, and traffic data centers, which are necessary for validating 

the prediction method.  

Travel time reliability is considered an important aspect in departure time and 

route choice models. Standard deviation, buffer time, coefficient of variation, and 

planning time were applied to capture the uncertainty associated with travel time. 

The effectiveness of using these parameters lies in the fact that the travel time 

distribution is normal. However, travel time distributions are rarely normal (more 

likely skewed) on urban roads. In this study, the travel time reliability was 

determined to provide the possibility to better incorporate travel time uncertainty in 

departure time and route choice models. 

5.4 Policy Implications  

Travel time information is one of the instruments that enable transportation 

engineers, planners, operators, and transport service users to determine measures for 

reducing congestion, journey length, and environmental pollution. Furthermore, it 

enables road users to explore the existing urban road network more efficiently. This 
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leads to an improvement of existing road infrastructure and increased passenger and 

cargo flows in the city. Furthermore, it will have an immediate positive impact on 

national economic development, growth of employment, and the prosperity. 

Moreover, the development of environmentally friendly transport and the extensive 

construction of by-pass routes will contribute to achieving ecological balance and 

enhance the quality of life in cities. Therefore, it is expected that the outcome of this 

study may be a guideline for policy makers in formulating appropriate strategies for 

improving urban mobility and accessibility.  

Furthermore, travel time prediction and reliability are very important 

information on transport policy agendas in Tanzania. The following implications can 

be made for practitioners and policy makers: 

• The travel time prediction model developed in this thesis provides the 

possibility to assess travel time reliability in urban areas. The 

influence of traffic demand, traffic supply, traffic control schemes, 

and heterogeneous traffic flow behavior for urban travel time can be 

explicitly considered.  

• The fundamental investigation of urban travel time mechanisms 

provides the possibilities to influence the travel time prediction, and 

as a consequence, to influence the travel time reliability from different 

aspects. 

• Demand: the influences of traffic demand measures (e.g., congestion 

pricing) on travel time reliability can be quantified.  

• Supply: the influences of the change in traffic supply on travel time 

reliability can be explicitly investigated.  
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• Traffic control: the traffic control scheme (cycle time, green splits, 

and offsets) can be optimized to provide a most reliable link/route.  

• Heterogeneous traffic flow conditions: heterogeneous traffic flow 

condition processes at intersections cause uncertainty, delay time at 

the intersections, and urban travel times. These factors should always 

be considered in urban travel time reliability models. 

5.5 Recommendations  

i. The proposed model was calibrated and validated using data collected from 

the five main corridors in the Dar Es Salaam city. Therefore, transport 

planners and policy-makers will be expected to make decisions based on the 

outcome of this developed model. It is recommended that more data should 

be collected on more than the five main corridors in order to compare with 

the predicted travel time from the ANN-KF model, and to ensure that the 

model will accurately represent real travel time in Dar es Salaam city.  

 

ii. The present study is the first attempts to predict bus travel time in Dar Salaam 

by applying Artificial Neural Network with four layers to estimate baseline 

travel time. To improve this model in future, it is recommend that, advance 

Artificial Neural Network could be applied.   

 

iii. Lack of clear indices for evaluating transport services can lead to poor 

service, misuse of road capacity, and increased urban congestion. Providing 

travel time reliability is expected to raise awareness for policy makers to shift 

from expanding road networks towards optimizing road operations and 

quality of services. 



158 
 

 

iv. This research has focused on five main corridors in Dar es Salaam, which 

contain controlled intersections. Urban roads with roundabouts and  street 

road networks were not addressed in this study. The variation of traffic in 

terms of oversaturation and under-saturation, in short periods, under similar 

traffic conditions was not considered. In this research, no special attention 

was given to different vehicle classes or traffic composition. Future research 

may improve the current model by incorporating the aforementioned 

variables. 

 

v. Many factors seem to influence urban travel time and its variability, as 

discussed in Chapter 1. The research mentioned many factors that influence 

urban travel time, but only five factors were considered in this study. Other 

factors, such as bus manoeuvres at the bus stops, crossing pedestrians and 

cyclists, turning vehicles from cross streets, and weather conditions were not 

explicitly considered; however, they could be included in future studies. 

 

vi. The study determined the duration of travel time reliability in five corridors 

in Dar es Salaam; it is recommended that in future study, focus should be on 

modeling of travel time reliability that will provide more information to 

transport planners on how to improve level of service in Dar es Salaam.  

Furthermore, this study determines travel reliability based on delay time 

intersections, waiting time at bus stops and in-vehicle travel time as main 

factors. It is also recommended that future studies should consider other 

factors such weather condition, driver behavior and traffic flow state.  
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vii. The research determines route travel time reliability, which has been analyzed 

using traffic flow data collected for only one week. To make the travel time 

variability model reliable need more time, thus data collection should be 

extended by applying modern equipment, such as inductive loop detectors. 

 

viii. The delay time variation at the intersections was evaluated based on delay 

time recorded during field data collection. Other factors, such as long queue 

and random traffic flow at the intersections, should be considered in future 

studies. 
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APPENDICES 

APPENDIX 3.0 

3.1 Travel Time Survey Form   
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3.2 Traffic Count Survey Form 
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3.3 Survey Maps 

 

Figure:  3.3 Survey Maps 
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Figure: 3.4 Secondary Collection Points 
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APPENDIX 4.0 

Table 4.1: Multiple Regression model Pugu  

 Variables   Coefficients Inbound  Coefficients Outbound  

 
Intercept 0.126 0.719 

Traffic states(X1) -0.014 0.128 

Waiting time at the bus stops (X 2) 0.016 -0.127 

Delay time at the intersections (X3) -0.095 0.143 

Link travel distance (X4 ) 0.490 -0.542 

Traffic volume (X5) 0.242 -0.173 

R Square 0.67 0.64 

 

 

Figure: 4.2 Artificial Neural Network model Pugu  

Table : 4.3  Multiple Regression model Mbagala  

 Variables   Coefficients Inbound  Coefficients 

Outbound  

Intercept 0.545 0.298 

Traffic states(X1) 0.063 -0.172 
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 Variables   Coefficients Inbound  Coefficients 

Outbound  

Waiting time at the bus stops (X 2) -0.007 -0.016 

Delay time at the intersections (X3) -0.059 0.295 

Link travel distance (X4 ) -0.020 0.010 

Traffic volume (X5) 0.100 0.093 

R Square 0.13 0.39 

 

 

Figure: 4.4 Artificial Neural Network model Pugu  

 

Table: 4.5 Multiple Regression model Tegeta 

 Variables   Coefficients Inbound  Coefficients 

Outbound  

Intercept 0.129 0.086 

Traffic states(X1) 0.022 0.166 

Waiting time at the bus stops (X 2) 0.012 -0.088 

Delay time at the intersections (X3) -0.158 0.042 
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 Variables   Coefficients Inbound  Coefficients 

Outbound  

Link travel distance (X4 ) 0.460 0.343 

Traffic volume (X5) 0.133 0.063 

R Square 0.62 0.65 

 

 

Table: 4.6 Artificial Neural Network model Tegeta (inbound and outbound 

Direction) 

 

Table: 4.7 Multiple Regression model Kawe 

 Variables   Coefficients Inbound  Coefficients 

Outbound  

Intercept 0.699 0.108 

Traffic states(X1) -0.042 -0.067 

Waiting time at the bus stops (X 

2) 

-0.513 -0.189 
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Delay time at the intersections 

(X3) 

-0.263 -0.074 

Link travel distance (X4 ) -0.078 0.300 

Traffic volume (X5) 0.100 0.599 

R Square 0.28 0.38 

 

 

 

 

 

 

Figure: 4.8 Artificial Neural Network model Kawe (inbound and outbound 

Direction) 

APPENDIX 5.0 

Travel time Reliability  
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Figure: 5.1(a) Planning Time 

 

 

Figure: 5.1(b) Planning Time  
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Figure: 5.2(a) Planning Time Index and Coefficient of Variation  
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Figure: 5.2(b) Planning Time and Buffer Time Index 

 

APPENDIX 6.0 

Delay Distribution at Intersection    

 

 

Figure: 6.1(a) Delay Distribution at Intersection Inbound Direction      
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Figure: 6.1(b) Delay Distribution at Intersection Outbound  Direction      

 

 

Figure: 6.1(c) Delay Distribution at Intersection off-Peak Outbound Direction      
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Figure: 6.1(d) Delay Distribution at Intersection Peak Outbound Direction      
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Figure: 6.2(a) Delay Distribution at Intersection Inbound Direction  

   Figure: 6.2(b) Delay Distribution at Intersection Outbound Direction      
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Figure: 6.2(c) Delay Distribution at Intersection Off-Peak Inbound Direction      
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Figure: 6.2(c) Delay Distribution at Intersection Peak Inbound Direction 

Figure: 6.3(a) Delay Distribution at Intersection Inbound Direction 
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Figure: 6.3(b) Delay Distribution at Intersection Off-Peak Inbound Direction 

Figure: 6.3(a) Delay Distribution at Intersection Peak Inbound Direction 
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Figure: 6.3(c) Delay Distribution at Intersection Outbound Direction 

 

Figure: 6.3(d) Delay Distribution at Intersection Off-Peak Outbound Direction 
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